
A MULTI AGENT SYSTEM FOR FLOW-BASED INTRUSION DETECTION

THESIS

David A. Ryan, Second Lieutenant, USAF

AFIT-ENG-13-M-43

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-13-M-43

A MULTI AGENT SYSTEM FOR FLOW-BASED INTRUSION DETECTION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

David A. Ryan, B.S.C.E.

Second Lieutenant, USAF

March 2013

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-13-M-43

A MULTI AGENT SYSTEM FOR FLOW-BASED INTRUSION DETECTION

Approved:

David A. Ryan, B.S.C.E.
Second Lieutenant, USAF

Dr. Gilbert L. Peterson, PhD (Member)

5 MA-e Zv/-.5'
Date

Date

Date

AFIT-ENG-13-M-43
Abstract

The detection and elimination of threats to cyber security is essential for system

functionality, protection of valuable information, and preventing costly destruction of

assets. This thesis presents a Mobile Multi-Agent Flow-Based IDS called MFIREv3 that

provides network anomaly detection of intrusions and automated defense.

This version of the MFIRE system includes the development and testing of a Multi-

Objective Evolutionary Algorithm (MOEA) for feature selection that provides agents with

the “optimal” set of features for classifying the state of the network. Feature selection

provides separable data points for the selected attacks: Worm, Distributed Denial of

Service, Man-in-the-Middle, Scan, and Trojan.

This investigation develops three techniques of self-organization for multiple dis-

tributed agents in an intrusion detection system: Reputation, Stochastic, and Maximum

Cover. These three movement models are tested for effectiveness in locating good agent

vantage points within the network to classify the state of the network.

MFIREv3 also introduces the design of defensive measures to limit the effects of

network attacks. Defensive measures included in this research are rate-limiting and

elimination of infected nodes.

The results of this research provide an optimistic outlook for flow-based multi-agent

systems for cyber security. The impact of this research illustrates how feature selection

in cooperation with movement models for multi agent systems provides excellent attack

detection and classification.

iv

To Rosie.

v

Acknowledgments

I express my deepest gratitude to all those whom continue to support me and sacrificed

time and effort to help me through a difficult time.

Professor Lamont provided the patience, encouragement, and knowledge making this

effort possible. He has dedicated extraordinary time in my education and success. I am

indebted to him for my growth as a student, officer, and engineer. My gratitude goes out

as well to all the professors in the Computer Engineering department for their advice and

teachings.

I would not have contemplated this road if not for my parents, who instilled within me

a love of creative pursuits, science, and language, all of which finds a place in this thesis.

To my parents, thank you. My siblings have also been great friends throughout this process.

My best friend stayed in touch weekly while completing Pilot Training and deserves my

recognition; as do many other friends from Ohio and the Academy.

I thank my classmates for their insights both academically and professionally.

I owe uncountably infinite thanks my Maker.

David A. Ryan

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgments . vi

Table of Contents . vii

List of Figures . xi

List of Tables . xiv

List of Acronyms . xv

I. Introduction . 1

1.1 Protecting the Network . 2
1.2 Goal and Objectives . 5
1.3 Approach . 6
1.4 Thesis Overview . 8

II. Background for Flow-Based Intrusion Detection 10

2.1 Network Modeling . 10
2.1.1 Model Limitations . 11
2.1.2 Network Topology Model . 12
2.1.3 Simulated Network Traffic . 16
2.1.4 Network Simulation Environment 17
2.1.5 Visualization of Network Model 18
2.1.6 MASON . 19

2.2 Pattern Recognition . 22
2.2.1 Formating Data . 23
2.2.2 Feature Selection . 24
2.2.3 Embedded Methods . 25
2.2.4 Wrapper Methods . 26
2.2.5 Filter Methods . 26
2.2.6 Hybrid Methods . 28
2.2.7 Classification and Regression . 29

vii

Page

2.2.8 Clustering . 33
2.2.9 Support Vector Machines . 35

2.3 Intrusion Detection . 44
2.4 Flow-based Intrusion Detection . 45
2.5 Network Attacks of Interest . 48

2.5.1 Denial of Service Attacks . 48
2.5.2 Vulnerability Scans . 50
2.5.3 Worms . 52
2.5.4 Man-in-the-Middle and Eavesdropping 53
2.5.5 Trojans and Back-doors . 56

2.6 Multi-Objective Optimization . 59
2.6.1 Multi-Objective Problems . 59
2.6.2 Stochastic Search . 60

2.7 Multiagent Systems . 64
2.8 Reputation and Trust . 68
2.9 Defensive Measures of Network Agents 71
2.10 Summary . 75

III. MFIREv3 Design Methodology and Implementation 77

3.1 Intrusion Detection System Formalization 77
3.2 Simulation Environment . 78

3.2.1 Network Design . 81
3.2.2 Multi Agent System Design . 86
3.2.3 Simulated Network Traffic . 94
3.2.4 Observations and Features . 95
3.2.5 Attack Models . 98

3.3 Training the Agents . 105
3.3.1 Generating training data . 107
3.3.2 Training the Classifier . 108
3.3.3 Feature Selection . 109
3.3.4 Kernel Method Selection . 113
3.3.5 Testing the MAS . 115

3.4 Movement models . 116
3.4.1 Agents using a reputation model 116
3.4.2 Agents using a Stochastic Model 120
3.4.3 Deterministic Search with Maximum Cover 122

3.5 Defensive Measures Methodology . 124
3.6 Visualization . 126
3.7 Summary . 128

viii

Page

IV. MFIREv3 Experimentation and Analysis of Results 129

4.1 Software Testing . 129
4.2 K-Fold Cross-validation . 133
4.3 Feature Selection . 134
4.4 Kernel Functions . 135
4.5 Movement Models Experimental Design 137

4.5.1 MFIREv3 Reputation System Experimental Design 139
4.5.2 MFIREv3 Stochastic Search Experimental Design 139
4.5.3 MFIREv3 Deterministic Maximum Cover Algorithm Experimen-

tal Design . 141
4.6 Movement Model Analysis . 143

4.6.1 MFIREv3 Reputation System Performance Assessment 143
4.6.2 MFIREv3 Stochastic Search Performance Assessment 147
4.6.3 MFIREv3 Deterministic Algorithm Performance Assessment 151

4.7 Defense Analysis . 153
4.8 Summary . 155

V. MFIREv3 Conclusions and Future Research . 156

5.1 Conclusions . 156
5.2 Future Research Activity . 159
5.3 Applications in Real-Word Settings . 160
5.4 Overall Summary . 161

Appendix A: History . 162

Appendix B: Network Threats . 165

Appendix C: Popular DES Engines . 169

Appendix D: Popular SVM Packages . 170

Appendix E: Intrusion Detection System Details . 172

Appendix F: Kernel Tests . 174

Appendix G: MFIRE System Details . 177

Bibliography . 181

ix

Page

Vita . 196

x

List of Figures

Figure Page

2.1 Illustration of LAN Topology [44] . 11

2.2 Probability density function for Pareto distribution, α = 1.0, b = 1.0 17

2.3 Basic elements of the MASON model and visualization layers [116] 21

2.4 A general perspective of a pattern recognition system [149] 23

2.5 Poor (a) and Optimal (b) separating hyperplanes of an SVM. The poorly

separating hyperplane offers bad generalization ability whereas the optimal

separating hyperplane perfectly divides both data sets by maximizing the

margin of the hyperplane [120] . 38

2.6 SVM separating features with a hyperplane in a higher dimensional space [96] . 40

2.7 Margin Bound for Multiclass SVM [185] . 42

2.8 Network flow . 46

2.9 Taxonomy of DDoS Attack Mechanisms [122] 49

2.10 Illustration of SSL Thwarting MitM Attack 54

2.11 Detection of MitM Attack in UDP Mode [169] 55

2.12 Event Classification Abstraction Levels for Harrier [40] 58

2.13 Generic trust model: conceptual relationships [77] 69

3.1 MFIRE v3 Package Diagram. 79

3.2 MFIREv3 class diagram. 82

3.3 MFIREv3 Activity diagrams for the Agent . 87

3.4 MFIRE Activity Diagram Message Exchange 88

3.5 MFIREv3 detailed activity diagrams for the agent provider and the agent 92

3.6 Illustration of Linear Dependecies in Features 97

xi

Figure Page

3.7 Illustration of Non-Linear Separability: Magenta-DDoS Worm- Red Scan-

Green MitM-Yellow Trojan-Blue Normal-Black(Covered); Feature 1: Number

of distinct destination addresses Feature 2: Total number of inbound bytes

Feature 3: Std. Dev-Ratio of packets to (dest addr, dest port) 98

3.8 Illustration of MFIREv3 DDoS . 100

3.9 Illustration of MFIREv3 Worm . 101

3.10 Illustration of MFIREv3 Scan Report . 103

3.11 Illustration of MFIREv3 Man-in-the-Middle Attack 104

3.12 MFIREv3 offline training and online testing execution paths 106

3.13 Add and Del Mutations . 110

3.14 Illustration of Non-Linear Separability: Magenta-DDoS Worm- Red Scan-

Green MitM-Yellow Trojan-Blue Normal-Black(Covered); Feature 1: Number

of distinct destination addresses Feature 2: Total number of inbound bytes

Feature 3: Std. Dev-Ratio of packets to (dest addr, dest port) 114

3.15 Kernels in Common Coordinate System [77] 115

3.16 Classification Rule . 120

3.17 Movement Actuator 3-feature Color Determines Probability 121

3.18 Worm Rerouting Network MFIREv3 . 125

3.19 Illustration of MFIREv3 Visual Interface . 127

4.1 Illustration of DDoS vs Normal Features F1: Num inbound Bytes F2: Num

inbound Packets . 137

4.2 Average Agents Moving (8-agent Reputation Model) 143

4.3 4 Agent Reputation Model: Accuracy & False Positives vs. time 144

4.4 8 Agent Reputation Model: Accuracy & False Positives vs. time 145

4.5 Accuracy box plots . 146

xii

Figure Page

4.6 Average Agents Moving (8-agent Stochastic Model) 148

4.7 4 Agent Stochastic Model: Accuracy & False Positives vs. time 149

4.8 8 Agent Stochastic Model: Accuracy & False Positives vs. time 150

4.9 Average Agents Moving (8-agent Deterministic Model) 152

4.10 Figures A: Illustrating the effective spread of a DDoS attack without Rate

Limiting and B: Illustrating Rate Limiting’s effectiveness against DDoS attacks 154

B.1 Short Taxonomy of Attacks [78] . 167

F.1 Illustration of DDoS vs Normal Features F1: Num inbound Bytes F2: Num

inbound Packets . 174

F.2 Illustration of Scan vs Normal Features F1: Num distinct dest addrs F2: Num

distinct dest ports . 175

F.3 Illustration of Worm vs Normal Features F1: Ratio of packets to dest tuples

F2: Ratio of packets from source tuples . 175

F.4 Illustration of MitM vs Normal Features F1: Local Num inbound Bytes F2:

Ratio of source ports to addr . 176

F.5 Illustration of Trojan vs Normal Features F1: Num distinct source ports F2:

Num inbound packets . 176

G.1 MFIRE: Messages sent by the providers and received by agents 178

G.2 MFIRE: Messages sent by agents and received by the providers 179

G.3 MFIRE: Messages sent by agents to other agents 179

G.4 MFIRE: Messages involved in agent migration 179

xiii

List of Tables

Table Page

2.1 Parameters for the spread of active worms [111] 54

3.1 Comparison of MFIRE Iterations . 93

3.2 How the Provider Rates Shared Feature Values 119

4.1 Feature Selection Classification Accuracies 135

4.2 Feature Selection Single Attack . 136

4.3 Linear Kernel Accuracies . 138

4.4 Reputation System Overall Accuracy . 146

4.5 Wilcoxon Rank Sum p-values . 147

4.6 Stochastic Search Overall Accuracy . 150

4.7 Deterministic Search Overall Accuracy . 152

xiv

List of Acronyms

Acronym Definition

IDS Intrusion Detection System

MAS Multi Agent System

ID Intrusion Detection

AS Autonomous System

BGP Border Gateway Protocol

LAN Local Area Network

CD Controlled Distance

FKP Fabrikant-Koutsoupias-Papadimitriou

HIDS Host-Based Intrusion Detection System

NIDS Network Intrusion Detection System

UDP User Datagram Protocol

SVM Support Vector Machine

EA Evolutionary Algorithm

RPC Remote Procedure Calls

TCP Transmission Control Protocol

IANA Internet Assigned Numbers Authority

HTTP Hyper Text Transfer Protocol

MOEA Multi-Objective Evolutionary Algorithm

xv

A MULTI AGENT SYSTEM FOR FLOW-BASED INTRUSION DETECTION

I. Introduction

The United Nations’ Telecommunication Chief, Hamadoun Toure, stated that the next

world war could potentially take place in cyberspace. “Loss of vital networks would

quickly cripple any nation, and none is immune to cyber attack” [31]. Cyber attacks

taken against the United States, China, South Korea and Estonia illustrate that government

networks are vulnerable and it is far more difficult to apprehend attackers in cyberspace

[31]. Even if attackers are identified, they are often located in countries with favorable

jurisdiction for their network activities. Former Department of Homeland Security Stewart

Baker stated that an increasing number of U.S. companies are retaliating against attacks

with “strike-back” technology. He also stated that these retaliations could violate state and

federal law [24].

Passive defense systems have bolstered network security, however 5.5 billion attacks

took place in 2012 according to Symantec; an 81% increase from 2011 [87]. It is

clear that cyber attackers are not deterred from infiltrating high value networks such as

banks, governments, and military. The reason is simple, the benefit of acquiring sensitive

information far outweighs the cost of working to breach the passive security. The key to

deterring malicious attacks is decrease the probability of unauthorized access to networks,

quickly detect and eliminate threats once they are detected, and most controversially;

increase the cost of launching an attack by counter offensive measures [24]. This

investigation focuses on the later two approaches for improving network cyber security.

As stated by Symantec security expert, Donna Howell, the key to not being victimized

by cybercrime is to maintain systems that are secure in order to deter attackers [87]. All

1

systems are vulnerable, but attackers target the weakest defenses much like the lion eats the

slowest antelope [87]. This may be true in the commercial market, however government

systems are targeted despite maintaining the highest levels of network security [136]. For

this reason, President Barack Obama issued twelve cyber-security initiatives to bolster

network defenses [136]. This research effort develops from the initiative, ”Deploy an

intrusion detection system of sensors across the Federal enterprise” [136].

1.1 Protecting the Network

Network attacks come in various delivery formats and serve multiple purposes.

Attacks can generally qualify under a few major classes. A subset of these major classes

of attacks allows for good testing for the purposes of grading the abilities of an anomaly

based intrusion detection system.

Three major classes of network cyber security threats include [163]:

• Attacks that consume network resources, denying their use for legitimate purposes

• Attacks that infiltrate systems, allowing attackers unauthorized access to system

resources, including sensitive data, data storage, privileged relationships with other

systems, and network connectivity

• Unauthorized vulnerability scans, providing attackers vital reconnaissance in

preparation for infiltrating activities

A quality attack likely falls under one attack class and consist of a series of attacks.

A series of attacks allows achieving an overarching goal through mutual reinforcement.

For example, a successful scan allows an attacker to infiltrate networks with great stealth

and precision; once in control of multiple hosts, the attacker may use them to launch a

distributed denial of service attack on another target system or network. Alternatively, the

attacker can use these newly acquired assets to conduct further scans more efficiently. As

2

another example, a clever attacker may launch a denial of service attack on a highly visible

service to divert the attention of security personnel from his infiltration activities.

Within these categories, many types of intrusion are recognized and five of them are

evaluated in this research effort [126]. The attacks examined in this research effort include:

Denial of Service, Worm, Scan, Trojan, and Man-in-the Middle. These represent a list

of attacks that create flow-based anomalies in the network in both a local and distributed

fashion. This is not a plethoric list of possible attacks, but does list the common categories

of attacks on networks. For a list of common network threats see Appendix B.

Intrusion Detection Systems protect the local area network from malicious traffic of

the outside Internet. The principle focus of the system is to monitor local traffic for signs of

malicious activity. In most Intrusion Detection System (IDS) no effort is expended to share

the obtained information with another IDS [126]. Compiling information over a broad

view of a distributed network from multiple sources provides greater information than is

obtainable from a single entity. IDSs with shared network statistics can better detect threats

progressing across network nodes [77].

Threats are unpredictable in their location, but it is beneficial to move an observing

Intrusion Detection Systems to the point of attack to improve classification. To perform

this task, we explore the concept of multi-agent IDSs, in which individual agents are able

to move throughout a distributed network, and share data to collectively determine if an

attack is occurring.

Multi Agent System (MAS) for Intrusion Detection (ID) is not a new concept. Multi

Agent Systems are appropriate for highly dynamic environments and environments with

distributions of data, expertise, and location [81]. Networks are often complex, dynamic

environments with security requiring various expertise.

The pursuit of the research is to improve the current reputation-based Multi-Agent

Intrusion Detections System, MFIRE, developed by David Hancock [77] and Timothy

3

Wilson [185]. The two common characterizations of an IDS are network or host-based and

signature-based or behavioral-based. All characterizations have fatal flaws in classification

capability.

A signature-based IDS reacts to strings flowing across its detection system that match

a repository of malicious signatures [42]. This system is effective, yet it requires an up to

date repository to detect many attacks. An up to date signature repository can also become

overwhelmed comparing each signature to the signatures in an ever expanding repository.

A behavior-based IDS reacts to system activities considered anomalous [112]. This means

that the system must already be infected before the IDS reacts. The technique integrated

in this effort comprises of a combination of the two IDSs. Agents monitor inbound and

outbound traffic flows in a fashion similar to that of a signature-based detection method,

however it does not keep a repository of malicious signatures. Instead, the agents examine

statistics related to these traffic flows and react if a disturbance to the normal statistics

occurs.

For the best results, agents need to use the best available features to classify the

traffic flows. Since anomalous statistics indicate specific attacks, the use of features that

provide the same statistics regardless of the state of the network work against accurate

classifications. We use a feature selection Multi-Objective Algorithm to select features that

indicate the state of the network. In that sense, as opposed to maintaining an ever-growing

list of malicious signatures, agents maintain a list of “universal” features to classify attack

types instead of exact/known attacks.

Network-based intrusion detection typically occurs at the network gateway. The IDS

has an overarching view of the entire network and is capable of detecting disturbances

between groups of hosts. The network-based IDS however, fails to protect individual

hosts from attack [167]. Detection of an attack on a single host effectively requires a host-

based IDS. The difficulty with host-based intrusion detection is the inability to recognize

4

malicious activity that spreads across the entirety of the network [36]. Previous work on

mobile agents by Hancock [77] and Wilson [185] aimed to combine the benefits of both

network and host-based intrusion detection. Multiple autonomous mobile agents reside

transiently at network hosts. The agents are capable then of addressing local anomalies and

summarizing the local information for a central entity performing network based intrusion

detection functions. This effort is further extended by the elimination of a single central

controller for agent movement and network-based intrusion detection. Instead, the agents

themselves each keep track of their own local statistics as well as a combined set of

summarized statistic in order to recognize both local and network based anomalies.

Despite the best efforts of network security, intrusions occur. Once they occur agents

are capable of taking an active roll in limiting the damage, spread, and overall effectiveness

of an attack. Limiting the spread of a Denial of Service attack can be as simple as limiting

the traffic rate within the network. Closing ports on an infected node from a virus or worm

effectively removes the node from the network preventing the spread to uninfected systems.

1.2 Goal and Objectives

The goal of this research is to develop a scalable distributed Multi Agent System

(MAS) for the defense of flow based system attacks and anomaly detection and

identification.

We achieve this cyber security goal and increase the effectiveness of a flow-based,

multi agent network attack classifier with the following high-level objectives:

• Continue design and evaluate a multi-agent intrusion detection system using a

Reputation system

• Evaluate the MFIREv2 multi-agent intrusion detection system using stochastic

search

5

• Design and evaluate a multi-agent intrusion detection system using deterministic

search with search incentives and Maximum Cover

• Design and evaluate a Multi Objective Evolutionary Algorithm for best subset feature

selection

• Determine if attacks can be classified using a Linear Kernel as opposed to the Radial

Basis Function when using MOEA selected features

• Create a robust distributed simulation framework for evolving self organizing multi-

agent systems

• Create a robust simulation framework for the automated defense of the network

Research results include an evaluation of the environment’s classification performance.

The research produces an effective and efficient simulation environment to conduct ongo-

ing, flow-based intrusion defense experiments.

1.3 Approach

This research effort continues a framework for conducting simulations of networks

under attack, and a multiagent system which is trained to detect threats and provide

defensive measures. Feature selection and training take place outside the MFIRE system.

Any system can be used for these processes with the effectiveness validated within the

MFIRE system.

The multi-agent framework provides an ongoing platform for MAS and network

research. The agents aim to find better node locations for classifying an attack, however

the user can instantiate the agents to perform other actions as well. We seek to compare

the effectiveness of three distinct models for attack identification. These models use the

same classifier, but agent movement decisions follow three different systems. A reputation

system is used among multiple agents called providers to dictate agents’ movement

6

decisions. With the second model, the agents are allowed to move freely on their own,

with their behavior optimized using a genetic algorithm. Finally, a more direct search is

implemented using a deterministic search method optimized for Maximum Cover of the

network. For a comparison, we also examine the case when agents are at a fixed random

location and no movement is allowed called the baseline case.

This research follows from three previous efforts by Eric Holloway [84], David

Hancock [77], and Tim Wilson [185]. The three previous efforts introduce similar concepts

that can envelop a broader Intrusion Detection System. We continue previous MFIRE

developments which tests the effectiveness of a flow-based, multi-agent network attack

classifier by moving agents to improved locations. We also seek to include work inspired

by Eric Holloway that created automated defense of the network by working to stop attacks

without user intervention being necessary.

Included in this effort is thorough feature selection testing. None of the previous efforts

placed significant emphasis on the quality of features used by agents in attack classification.

The expanse of all network attacks be tested on an “optimal” feature subset determined by

an Evolutionary algorithm. Also the effect of placing the feature set for best classifying a

specific attack when only that attack and normal traffic flow take place is examined.

Wilson [185] took elements of both Holloway’s [84] and Hancock’s [77] efforts to

create a single integrated simulation environment for multi-agent flow-based intrusion

detection. Wilson’s effort included executing initial baseline experiments to test the

combined approach, and demonstrate the potential usefulness of such an environment.

This research effort aims to improve upon the three efforts. The free-movement

and reputation models are compared to a baseline, but the reputation model no longer

requires a centralized controller. Making the agents completely autonomous and self-

organized eliminates the single point of failure while maintaining the algorithmic approach

of the reputation model. We aim to take the automated defense approach introduced by

7

Holloway and apply it to attacks outside of the scope of his effort. The deterministic

approach introduces the idea of node memory for comparison with the other models. Node

memory allows agents to avoid “bad” nodes, but increases the amount of data in the system

dramatically.

1.4 Thesis Overview

This chapter provides an introduction to the problem with goals and objectives

to approach a solution. Chapter 2 explores the various background concepts in

approaching a Multi-agent system for intrusion detection. Chapter 3 details the design

and implementation of MFIREv3. Chapter 4 presents the testing and analysis of the results

of our system. Chapter 5 concludes with a summary of the effective results of the research

and the overall impact of the tests. Opportunities to further investigate these impacts is

proposed as future work in the conclusions of Chapter 5.

The Appendix includes a history of the MFIRE design from previous research efforts.

It also includes fine grained details of system communications, tests, and lists of popular

products relating to ID that are not used in this effort. The Appendix is referenced at

points in the document for related information. Portions of the document, including the

Appendix, reference taxonomies of attacks, IDS packages, and Classification packages.

These taxonomies help establish the decision process of choosing a subset of the taxonomy,

as well as shed light on the other options.

Results from the experiments demonstrate that MFIREv3’s movement models allow

the agents to find nodes in the network that increase the system’s classification accuracy.

The original decentralized approach proposed by Wilson [185], is thoroughly tested for

the first time and provides good vantage points using fewer network resources than the

other two movement models. The deterministic search model provides a new avenue

of development involving specific node “reputation”. Tests illustrate an improvement in

classification accuracy using this approach over the baseline model.

8

The results also demonstrate the effectiveness of “optimal” feature sets for classifying

attacks. Both in the cases where the agents needed the optimal set to detect all five attacks

and just one of the five attacks, accuracy increased from the random feature selection used

in MFIREv2. With respect to the defensive measures, the results illustrated that agents are

effective in limiting the effects of attacks.

MFIREv3 can be used for any number of experiments involving flow-based network

simulation or multi agent system. The MFIREv3 simulation environment provides a

scalable framework to execute network threat analysis using robust multi-agent, flow-based

techniques. Conducting a wide variety of experiments, not specific to intrusion detection,

is possible with the current framework.

9

II. Background for Flow-Based Intrusion Detection

This investigation focuses on the improvement and expansion of network-based

attack recognition. The primary effort focuses on determining an “optimal” feature

set for recognizing a flow-based attack, the classification of these attacks on a system,

autonomously determining and finding “optimal” agent locations for detection, and the

mitigation of flow-based network attacks once they take place. This chapter supports these

goals by discussing the foundations, concepts, and current research relevant to network

intrusion detection, classification, feature selection, and defense.

Section 2.1 discusses the various aspects of network modeling including traffic,

topology, and visualization. Section 2.2 details the important aspects of pattern recognition,

which is the principal component of anomaly-based intrusion detection systems. The

applications of these pattern recognition techniques is discussed in section 2.3. Section

2.5 introduces the five attacks implemented in this research effort. Multi-Objective

Optimization is discussed in section 2.6 with the applications of a Multi-Agent System

in section 2.7. The chapter concludes with a discussion of reputation in a Multi-Agent

System, Defensive measures of agents.

2.1 Network Modeling

Network topology is the arrangement of various nodes within a computer network.

There is both a physical and logical topological structure, where the physical model

illustrates the locations of the nodes and their interconnections while the logical model

illustrates the data-flow between components within the network. A collection of

routers and other networked devices under the same administrative control is called an

Autonomous System (AS), and gateway routers are responsible for forwarding traffic to and

from other autonomous systems. An example of an AS is a Local Area Network (LAN),

10

where any given node within the LAN has physical links to other nodes within the network

that pass data to one another. The Internet consists of many AS and other sub-networks.

An inter-autonomous system routing called Border Gateway Protocol (BGP) handles traffic

between AS [104]. Figure 2.1 illustrates a basic Local Area Network topology where traffic

would flow between the separate nodes and to the Internet.

Figure 2.1: Illustration of LAN Topology [44]

Two primary modeling concepts within this domain are topology and traffic. With

a firm grasp of these principle aspects, we can devise a network modeling system that

achieves a good balance between efficiency and accuracy. Testing and evaluation must be

carried out on a modeled network. It is not appropriate to deploy an untested defensive

application without evaluation on a modeled network. Testing and evaluation on a modeled

network allows for controlled conditions over a range of situations [17]. Modeled networks

also provide reduction of maintenance that would otherwise be unwieldy on an operational

environment.

2.1.1 Model Limitations.

Realistic modeling of Internet Network Topology is difficult given the overall

organization of the complex network itself. The internet is a network of nodes that

are themselves networks. Certain entities represent specific qualitative behaviors within

the simulation. A qualitative simulation as defined by Kuipers [102], is “the prediction

11

of the possible behaviors consistent with incomplete knowledge of the structure of the

physical system.” These qualitative behaviors that require representation in this research

investigation include the actions of both malicious and benign users of the Internet, as well

as development of a network topology given the requirements of the system.

A qualitative behavior or solution can be either sound or complete. A sound solution

is one where no trajectory which is the solution of a concrete equation matching the input

can be missing from the output. A complete solution is one that does not produce any false

prediction for any particular input. This is in accordance with the incompleteness of any

strong formal system as proven by Kurt Gödel [56].

Despite this limitation, many refined models exist capable of handling all of most

practical data. The modeling process illustrated in this effort is inspired by a process of

starting with a simple model and refining the model in steps until arriving at the intended

degree of “realism” of the system [82].

2.1.2 Network Topology Model.

The creation of a valuable environment for performance evaluation is the direct

product of network topology Yook et al [188]. It is often the case that protocols working

seamlessly on prototypes fail to scale up to real networks making them ineffective. This

is caused by the ineffective realization of key components of real network complexity in

a model. The key and greatest challenge of modeling network topology is capturing the

dynamic properties of a real network with topologies growing and changing over time.

Effective dynamic models allow defensive measures to be tested on realistic predictions of

the future network topology [188].

Early attempts at topology modeling relied heavily on random graphs [28, 52]. One of

the most popular network models was the Waxman Model, which created graphs based on

the Euclidean distance between nodes [180]. Although effective modeling small networks,

12

the ability to model complex network topology fell short with Waxman’s model requiring

a new approach.

The next advancement in modeling network topologies proposed the induction of each

different hierarchical level of the network model [49]. The Waxman model was never

intended as an all-purpose model for network topology, as Waxman designed the model as

a test for Minimum Steiner Tree Problems [35]. The difference is that intranetwork data

and internetwork data are not the same and need to be treated differently. This effort lead

to the creation of two network topology generators; Tiers [49] and Transit-Stub [97, 190].

In the late 1990’s research conducted on internet topology found that the Internet

is a scale-free network: a network whose degree distribution follows a power-law, at least

asymptotically [55]. That is, the fraction P(k) of nodes in the network having k connections

to other nodes goes for large values of k as

P(k) ck−λ (2.1)

With this discovery, three eigenvalues were calculated corresponding to the power-

law that characterize the inter-domain topology measurements derived from BGP routing

tables. The three values were the Rank exponent, Outdegree exponent, and the Eigen

exponent. The calculations of these exponents lead to the discovery that they are all

practically equal, meaning that the Internet could be classified as a scale-free network [54].

Utilizing the findings of the scale-free network model, Barbási and Albert incorporated

the results into a study of the attack tolerance of complex networks [4, 16, 45]. They

concluded that the Internet’s AS-level architecture follows a power-law distribution, that it

is resilient to random attacks but very vulnerable to attacks targeting central important

nodes. These select nodes have most of the links to other nodes, while most of the

nodes have very few links making most of the nodes resilient to attacks with the most

important ones very vulnerable. Barbási later worked with Yook in further demonstrating

13

the shortfalls of existing topological network models and refining what came to be known

as Barbási-Albert (BA) models [188].

Although certain critics object to the power-law approach, specifically Willinger, it

can be concluded from the BGP-derived AS maps are “Pareto-type principles; that is, a

small number of nodes have many neighbors, while most nodes are connected to only a

small number of neighbors” [101]. For more on Willinger’s opposition to the BA model

see [101, 183]

Willinger instead advocates for using domain knowledge and exploiting the details that

matter when dealing with a highly engineered system [183]. In an interesting development

using this approach and power-law models, a model known as Fabrikant-Koutsoupias-

Papadimitriou (FKP) developed [54]. FKP successfully generated topologies exhibiting the

power-law relationships, but instead of using a purely stochastic approach, these power-law

properties arise from a simple Multi-Objective Optimization (MOO), involving “last-mile”

connection costs and transmission delays as measured in hops [161]. Each node i arrives

at a uniformly random point and attaches itself to the node j that minimizes the weighted

sum :

min j<i{α · di j + ecc(j)} (2.2)

The Euclidean distance between the nodes, di j, represents the “last-mile cost.” The

relative importance of this objective is determined by the weight, α. The other term is the

eccentricity of j and captures the distance from the center to j.

Spatharis et al. present a well-balanced approach called the Controlled Distance (CD)

Model [161] based on the power-law models of FPK [54] and Willinger model [183].

The objective of CD is to address the need for edges between nodes that are not quite

leaves, nor particularly central, but are of intermediate centrality. As each node i is added

14

to the network and linked to the node j, a second edge is attached from j to another node k

minimizing

mink{α · d jk + ecc(k)} (2.3)

over all k such that the hop distance from j to k is at most a constant c [161].

By decreasing the power-law exponent while having high average degree and several

leaves, this model is considered a top performing topological model [161]. By achieving

similarity to the Internet’s AS graph, this model allows for extensive testing and evaluation

with improved scalability for protocols.

Topology generators include:

• TopGen [161]

• Tiers [49]

• GT-ITM - Georgia Tech Internetwork Topology Models [35]

• Inet [186]

• nem [119]

• BRITE [125]

• GDTANG - Geographic Directed Tel Aviv University Network Generator [15]

• RealNet [41], [40]

RealNet is a newer addition to the list [77] which relies on publicly available datasets

including BGP tables and traceroute records, as does [55]. It addresses some of the

problems inherent in these datasets and does not attempt to fit specific power-law-based

statistics. For example, it gives direct consideration to the IP-aliasing problem, whereby

15

more routers may be inferred than actually exist because each router has a different IP

address for each of its interfaces. It also factors in likely policy relationships between

neighboring autonomous systems [77].

In summary, many shortfalls exist with the power-law approach to modeling network

topology even with the Internet exhibiting Pareto-type principals. The ideal topology

modeling approach should appease both the engineers responsible for implementing actual

Internet topologies, as well as the protocol and application developers seeking validation

that the program works for an extended time frame. Although this perfect topology

modeling framework does not exist, FKP/CD provides a reasonable approach [185].

2.1.3 Simulated Network Traffic.

In addition to modeling network topology, the simulated Internet traffic must be

realistic in order to properly examine protocol. Traffic modeling began with simple Poisson

distributions, but now includes models that exhibit self-similarity [20]. Even more so than

Internet network topology, the traffic created between nodes has been shown to display

scale-invariant statistics.

A widely used model for packet routing is the Poisson model. Willinger and Paxson

[184] advocate against the Poisson model for better, more fractal-like traffic distribution

models [77]. For network traffic, a Pareto model may be preferred.

The Pareto model exhibits scale-invariant behavior [69]. It has a density function

P(X) = αbα
xα+1 , x ≥ b, which has a heavy tail [99]. Figure 2.2 shows an example for

α = 1.0, b = 1.0. Willinger and Paxson explain that this heavy tail accounts for the

fractal nature of aggregated network traffic [184]. To generate a random Pareto-distributed

sample, inverse transform sampling is used. Given a random variable U drawn from the

uniform distribution (0, 1), T , is Pareto-distributed [48], and given by

T =
b

U
1
α

(2.4)

16

Figure 2.2: Probability density function for Pareto distribution, α = 1.0, b = 1.0

2.1.4 Network Simulation Environment.

This section focuses on the underlying network simulation framework. Specifically,

we discuss Discrete Event Simulation. This method views the simulation as being

composed of a chronological sequence of events, each of which occurs in an instant

and changes the state in the system, possibly resulting in more events being scheduled.

Comprehensive treatment of Discrete Event Simulation is given in [13].

Components of DES systems include:

• Clock - The simulation keeps track of current simulation time in appropriate

measurement units, but unlike in real time simulations, time in a DES jumps from

one instantaneous event to the next.

• Schedule - The set of events to handle, typically implemented as a priority queue

sorted by event time.

• Random-Number Generator - pseudorandom, which is desired in order to support a

rerun of a simulation with exactly the same behavior

• Streams - Independent function streams for each function variable

17

Typical usage of a DES includes the gathering of statistics, for which facilities may

be provided, and the specification of a stopping condition. As may be the case with

continuous- but not real-time simulation, a discrete event simulation runs at a rate that is

not tied to the real-world clock. When resources permit, simulations may be run potentially

much faster than real time, which is useful for collecting large amounts of statistics. In other

cases, it may be desired that simulations run much slower than real time, perhaps paused

for an extensive period of time via checkpointing, which is useful for direct observation

and analysis of system dynamics.

A recent, innovative network-based anomaly detection system is presented in [93].

The authors use a two-stage classification approach to detect novel intrusions of various

types, and is shown to have good empirical performance. Many IDS systems have shown

in recent years to achieve good performance with real-world traffic [19, 80, 81, 85, 90,

129, 187]. Our approach is substantially different, in that we seek a robust environment to

generate simulated network traffic; and the goal of our research focuses on improvement

in performance given the movement of agents, not on achieving absolute performance.

Thus it is difficult to find existing systems to compare our approach, however many of

systems previously mentioned provide a basis for our key concepts of multi-agent systems,

network-based detection, anomaly-based classification, and flow-based statistics.

One final method of performance enhancement includes parallelization of the DES. As

is the case with any system, parallelization allows for network resources to be used more

efficiently by reducing bottlenecks in computation. Parallelization of DES is discussed

extensively in [64]. More recently, Park and Fishwick present their work using graphics

processing unit-based clusters in [139].

2.1.5 Visualization of Network Model.

In this thesis investigation several expressive visualization techniques for intrusion

detection and anomaly data are considered. The key idea is to classify the underlying

18

data according to its prominence on the resulting visualization by importance value. The

importance property drives the visualization pipeline to emphasize the most prominent

features and to suppress the less relevant ones. The suppression can be realized globally,

so the whole object is suppressed, or locally. A local modulation generates cut-away and

ghosted views because the suppression of less relevant features occurs only on the part

where the occlusion of more important features appears [60].

Features within the data are classified according to a new dimension denoted as object

importance. This property determines which structures should be readily discernible and

which structures are less important. Next, for each feature various representations (levels

of sparseness) from a dense to a sparse depiction are defined. Levels of sparseness define

a spectrum of optical properties or rendering styles. The resulting image is generated by

ray-casting and combining the intersected features proportional to their importance. An

additional step to traditional volume rendering evaluates the areas of occlusion and assigns

a particular level of sparseness. This step is denoted as importance compositing. Advanced

schemes for importance compositing determine the resulting visibility of features. If the

resulting visibility distribution does not correspond to the importance distribution, different

levels of sparseness are selected.

The applicability of importance-driven visualization is demonstrated on several

examples from medical diagnostics scenarios, flow visualization, and interactive illustrative

visualization in [175]. Importance-Driven Feature Enhancement propels the utilization of

the most vital information with limited noise from extraneous data or applications. The

visualization of the network model must cater to the needs of the research effort. In this

investigation, the agent based system must effectively demonstrate the actions of the agents.

2.1.6 MASON.

There is a wide variety of discrete event simulation engines available for building an

agent based simulation (see Appendix C). Typically, each emphasizes a certain domain or

19

technique. For example, OMNeT++ [174] is geared toward network simulation, as is ns2

[121] and cnet [122, 123], while Parsec’s emphasis is parallelism [12]. Finally, MASON

[116] caters to the needs of multi agent systems simulation. MASON is used in MFIREv3

as it was in previous versions of MFIRE [77, 185] and in SOMAS [84].

MASON is a single-process DES core and visualization toolkit written in Java [116].

It is flexible enough that it can be used for a wide range of simulations, but emphasizes

support for “swarm” simulations with up to millions of agents. It is fast and portable and

produces guaranteed replicable results, courtesy of checkpointing facilities.

There are three principle reasons for the selection of MASON as the underlying DES

engine:

• This research concerns a multi agent system - MASON’s structural expertise

• MASON does not impose nor even provide a predefined abstraction of real-world

computer networks. Our implemented network simulation is customized to focus on

prototyping a system able to function in a moderately complex network environment.

Several of the discrete event simulation engines mentioned in this section are

heavily invested in accurate simulation of real-world protocols, network devices,

and applications, but the much higher complexity of these environments introduces

networking issues not directly relevant to MFIRE’s initial implementation.

• We have some prior experience with MASON. This research began as a way to

complement the attack mitigation capabilities of Holloway’s Self Organized Multi

Agent Swarms(SOMAS) [84], and continued through the two previous iterations of

MFIRE [77, 185]. SOMAS and all MFIRE versions operate in a MASON-based

network simulation.

MASON is designed to handle large numbers of agents in complex environments

[116], but it is not explicitly an agent framework, such as the frameworks provided by

20

JACK, Cougaar, JADE, and others [113]. These frameworks in some cases (e.g. JACK

[86] and JADE [21]) provide compliance with the interoperability standard called the

Foundation for Intelligent Physical Agents (FIPA) [22]. Such agent frameworks should

be explored for use by MFIRE in future research.

The underlying model runs in a layer independent of the visualization layer. Thus,

while the visualization facilities enable easy interaction with simulations, simulations may

run without visualization, or the visualization can be changed at will, perhaps according to

the preferences of the observer. The basic elements of the MASON model and visualization

layers are presented in Figure 2.3.

Figure 2.3: Basic elements of the MASON model and visualization layers [116]

The visualization layer runs on top of the simulation model controlling the agents,

topology, traffic, and communicating with the Disk. The Disk contains the necessary data

producing the simulation and stores the results of the experiment [116].

21

MASON has been used successfully for applications ranging from physics demon-

strations to cooperative target observation in unmanned aerial vehicles to the testing of ant

foraging algorithms [116].

For this research, the MASON DES continues to be selected due to its agent-based

features and tight Java integration. OPNET, OMNet++ and NS2/NS3 simulate routing

at a much more detailed level than is needed for our purposes, though may be explored

in future research. The purpose of this research investigation requires the simulation of

movement models to test multiple movement algorithms. MASON allows for generic

testing of the effectiveness of movement models, classification, multiple feature sets, and

actions as proposed by Holloway [84] without the over-detailed framework necessary for

packaging the system for commercial use. The MASON DES provides scalability to adapt

to changing criterion without a burdensome overhaul of the framework that is required in

more detailed environments [116]. OPNET, OMNet++ and NS2/NS3 may provide suitable

transitions to a real network implementation.

2.2 Pattern Recognition

Given the groundwork for a simulation framework reflecting the domain of the

Internet, we continue by presenting the research in recognizing malicious activity on a

network. Pattern recognition is the assignment of a label to a given input value [27]. One

example of pattern recognition is classification. Classification works by assigning each

input value to one of a given set of classes [153]. If the classification is accurate, precise,

and timely, the malicious activity may be counteracted. Figure 2.4 illustrates the general

components of a Pattern Recognition System that are discussed in this chapter.

Legitimate traffic has been characterized as presenting short periods of high density

traffic followed by long periods of idleness. Deviations from this traffic flow may reveal

the presence of anomalous and potentially malicious traffic. Using techniques from the

22

Figure 2.4: A general perspective of a pattern recognition system [149]

broad field of pattern recognition, one can classify the traffic features in order to discover

intrusions of the network.

Pattern recognition algorithms generally aim to provide a reasonable answer for all

possible inputs by matching inputs to what pattern best-fits the observable data [153]. This

is very different from pattern matching algorithms, which look for exact matches in the

input with preexisting patterns [50].

Authoritative texts on pattern recognition include [50], [79], and [27]. A general

description of a pattern recognition system is shown in Fig. 2.4. The definition found

in [79] is the primary source for pattern recognition throughout this investigation.

2.2.1 Formating Data.

Preprocessing formats the data, possibly performing some filtering in the case of noise

or some system or environmental anomaly. Data preprocessing is an important step in

the pattern recognition process. Loosely controlled data gathering methods often lead to

impossible combinations (e.g. Gender: Male, Pregnant: Yes), missing values, out-of-range

values, etc [10]. Without data preprocessing, this data would cause misleading results and

waste resources solving impossible data structures [79].

Feature generation, sometimes referred to as feature extraction, is the transformation

of raw data into derived data points that may facilitate the characterization of the observed

process [14]. When the input data to an algorithm is too large for processing and suspected

23

to contain redundant data, then the input data is transformed into a reduced set of features

or vectors. The features are selected by the quality of information the feature provides in

helping to determine the classification of the state [172]. This reduction to a set of features

is known as feature extraction, and this dimensionality reduction can also be applied to a

set of features to further reduce the magnitude of data [173]. This process is known as

feature selection, and it is further discussed in 2.2.2.

It is often the case that the raw data itself is used for feature measurements.

Commonly, features are statistical measurements of the raw data or may be the result of

passing the raw data through a mathematical transformation such as a Fourier transform.

The results of the transformation create features; statistical data descriptors that distinguish

clusters or states. The feature is represented as X. If X is a feature, it has p elements, and

components are accessed via subscripts X j [173].

2.2.2 Feature Selection.

Dimensionality reduction from Figure 2.4, or feature selection, filters the available

features with the premise that not all features are useful [100]. Some features might

be redundant or be harmful for the classification process due to their random nature or

tendency to indicate an incorrect class. Even if all features are useful, resource limitations,

in terms of computation, bandwidth, or storage, may require filtering the least beneficial

information prior to performing clustering, classification, or regression. Feature selection

benefits classification by speeding up the learning process, enhancing the generalization

capability, improving model interpretation, and potentially reducing the need to enter

higher dimensional space in order to separate classes [100].

As noted by Gates at al. in [72], the three principle objectives of feature selection are:

1) improving prediction performance; 2) enabling faster, more efficient prediction; and 3)

providing a better understanding of the underlying process that generated the data.

24

One of the primary reasons feature selection has the potential to greatly improve

prediction performance is that it directly confronts the curse of dimensionality [23]. Hastie

et al. [79] examine some of the many manifestations of this problem. Essentially, such

manifestations arise from the fact that in order to maintain the same sampling density

enjoyed in a lower dimension, the number of samples must increase exponentially as one

moves to higher dimensions. Usually, the number of samples practically attainable is far

fewer than necessary to maintain the desired sampling density. The impact of this is either

poor performance in classification accuracy or the creation of an artifact and slow rates of

computation due to an overabundance of data [79].

Both simple and complex methodical approaches exist for feature selection algo-

rithms. Feature selection methods can be decomposed into two categories: feature ranking

and subset selection [72]. Feature ranking ranks the features by a metric and eliminates

the worst performing features. Subset selection searches the set of possible features for the

optimum subset, although this is impractical for large numbers as the problem is NP-Hard

[5], therefore finding a “good” subset becomes the objective. For this investigation a sim-

ple feature ranking approach called ReliefF is examined as well as a more robust subset

selection algorithm that also employs feature ranking techniques to reduce complexity.

2.2.3 Embedded Methods.

Subset selection of features can be decomposed into three types of algorithms:

wrappers, filters, and embedded [105].

With embedded methods the structure of the class of functions under consideration

plays a crucial role, and techniques are developed that are specific to certain classifiers.

See [105]. Embedded techniques are embedded in and specific to a model and therefore

are not used in this research effort.

25

2.2.4 Wrapper Methods.

Wrapper methods test feature subsets against the chosen learning machine, which is

regarded as a black box [98]. The primary issue becomes determining how to search the

space of all possible variable subsets which could take an impossible amount of time [5].

Another issue is assessing the prediction performance of a learning machine to guide the

search and halt it once a good fit is reached [98].

2.2.5 Filter Methods.

A filter method typically involves some notion of feature ranking independent of the

choice of the predictor. This is computationally efficient because it requires only the

computation of p scores and sorting the scores [72]. It introduces bias but may have

considerably less variance compared to other methods and is therefore robust against over

fitting [72, 79]. Filter methods include analyzing performance as a single variable classifier

and information theoretic ranking criteria [79].

These filter techniques can be useful but also incur limitations. The underlying

assumption is that variable dependencies can be ignored, but in practice, this is not always

the case [72]

Methods that score variables individually and independently of each other cannot

to determine which combination of variables would give the best performance. Filter

methods often provide reasonable performance though, and the computational efficiency

is unmatched.

A common technique for filtering features involves ranking them according to

how well they separate sample data distributions collected from two classes[72]. The

Bhattacharyya distance [26], named after the mathematician, is a measure of the distance

between two sample distributions. If two sets of samples are produced by the same process,

the estimated distributions should be very close, and the Bhattacharyya distance near zero.

26

Formally, for discrete probability distributions p and q over the same domain X, the

estimate of the Bhattacharyya distance DB(p, q) is [72]:

DB(p, q) , −ln(BC(p, q)) (2.5)

where

BC(p, q) ,
∑
x∈X

√
p(x)q(x) (2.6)

is the Bhattacharyya coefficient. For each value of x ∈ X found in both sample sets p and

q, BC(p, q) increases, up to a maximum of 1 when p(x) = q(x) for all x ∈ X; in this case,

DB(p, q) = 0 [72]. Conversely, as the limit of BC(p, q) approaches 0, observe that DB(p, q)

increases without bound [72].

Filter methods are capable of supervised learning [72]. Supervised learning is the task

of inferring a function from labeled training data [79]. A supervised learning algorithm

analyzes the training data and produces an inferred function, which is called a classifier.

The inferred function should predict the correct output value for any valid input object.

This requires the learning algorithm to generalize from the training data to classify the

current data input [72].

Relief is a feature ranking method that provides supervised learning by using the

nearest in-class H and out-of-class M instance and determines the ranking based on a

weighting scale [79]. By picking an instance R and determining that instance’s nearest

hit and miss it is able to update the weights of its attributes A using the equation [79],

W[A] = W[A] − DIFF(A,R,H)/n + DIFF(A,R,M)/n (2.7)

where n is the number of instances selected and DIFF is the difference function used to

calculate the difference between values of attributes [72].

The difference function is normalized by n, such that all values fall within the range

of -1 to 1, with 0 meaning that the two values are exactly the same [4]. The difference

27

between instances is the total difference, so that using the Manhattan rule the sum of the

distances over all attributes provides the difference between classes.

After randomly selecting n instances, the ReliefF algorithm finds the nearest K

neighbors from its class as well as the nearest K misses from each of the other classes.

This means the weight from each of the other classes is determined by that class’s size

[79]. This allows ReliefF to work with multi-class data as opposed to datasets containing

only two classes.

ReliefF is a very fast method for feature selection as it is a first-order classifier,

however it does not take into account feature relationships [72]. In many cases,

combinations of less quality features provide a better classifier than a combination of the

top features. This is due to the Synergy of features; where the whole is greater than the

sum of its parts [74]. In order to find the best set of features for classification, one must use

a subset selection approach as discussed in 2.2.9.

2.2.6 Hybrid Methods.

Wrappers and filter methods both use a search algorithm to search through the space

of possible features and evaluate each subset. For this effort, a hybrid combination of a

filter and wrapper method is considered in order to prevent over fitting and reducing the

complexity of performing an exhaustive search on a model. This still benefits from the

tailoring to a model without solely relying on a simpler filter.

Memetic frameworks for the hybridization of wrapper and filter feature selection

methods are a growing field in classification problems for both single and multiple objective

instances [152]. A meme is a “unit of culture” which in this case represents the pattern of

behavior of the data [46]. Thus a memetic framework incorporates the culture or history of

the features.

The purpose of the research effort is to incorporate traditional evolutionary algorithms

to improve classification performance while accelerating search for optimal feature subsets.

28

Single objective feature selection classification using MOEAs is shown to speedup

classification of optimal feature subsets [166], while multi-objective/ multi-class problems

require the classification of features for multiple classes. In the multi-objective case, certain

features that can be shown to improve the classification for one class often degrade the

classification capability for another class [27].

The feature selection algorithm cannot select one set of features that optimally

classifies for each of the classes. Instead of choosing one subset of features, the MOEA

moves towards an optimal front of non-dominated solutions [27]. Each point on the non-

dominated front illustrates a selection of features and their relative accuracies within the

four classes. Some features that might independently be good features might cause too

much noise in combination with other features. On the other hand, a feature that might

not help classify attacks by itself could be very helpful for another set of features. The

objective of the MOEA is to mutate the combination of features until it finds the best

choices for subsets of features. For a discussion of MOEAs, see 2.6.2.

2.2.7 Classification and Regression.

Classification, clustering, and regression represent the three fundamental problems of

pattern recognition [27], one or more of which must be addressed by any pattern recognition

system.

Classification is a process that assigns one of a discrete number of labels to each input

[27]. A is the ‘true’ output and takes values from the set A. The classifier is Â and should

also take values fromA. Regression seeks to model a continuous process [100]. The output

of the function being modeled is denoted as Y and takes values from some continuous set,

such as R, and a predictor for Y is Ŷ [79].

In pattern recognition, we want to learn x 7→ y where x ∈ X is an object and y ∈ Y

is a class label [100]. In the case of Network Intrusion Detection, x would represent and

29

individual data stream and y would represent the type of attack or lack of attack of the data

stream.

Classification and regression as supervised learning techniques require training data in

which inputs are associated with known output [172]. Based on the specific classification

or regression technique selected by the system designer, the system derives the necessary

parameter values for a process that reliably transforms the training input into the desired

output.

Formally, given a training set (x1, y1)...(xm, ym), we want to train the classifier to

generalize such that given a previously seen x ∈ X it finds a suitable y ∈ Y . In other

words, we want to find a classifier y = f (x, α) where α are the parameters of the function

[100].

We can attempt to learn f (x, α) by choosing a function that performs well on training

data:

Remp(α) = 1/m
m∑

i=1

l(f (xi, α), yi) (2.8)

where l is the zero-one loss function, l(y, ŷ) if y , ŷ and 0 otherwise. Remp is called the

empirical risk, and m represents the training error [100].

We are trying to minimize the overall risk [100]:

R(α) =

∫
l(f (x, α), y)dP(x, y) (2.9)

where P(x, y) is the (unknown) joint distribution function of x and y. R(α) represents the

test error.

A second formalization of the process of minimizing misclassification is shown in

[79], using the Expected Prediction Error (EPE):

EPE , E[L(A, Â(X))] (2.10)

L is a loss function, and the expectation E is taken with respect to the joint distribution

P(A, X). With K = |A| classes, the loss function may be represented as a K × K matrix

30

L [100]. This loss matrix has values of zero on the diagonal. Everywhere else, a non-

zero value L(k, l) indicates the penalty for misclassifying an observation as belonging toAl

when it actually belonged toAk [100].

By conditioning on X, we can rewrite 2.10 as [100]:

EPE = EX

K∑
k=1

L[Ak, Â(X)]P(Ak|X) (2.11)

When the loss function is zero-one, meaning that a single unit penalty is assessed for

any misclassification, the intuitive guidance for Â(X) is [100]:

Â(X) = Ak if P(Ak|X = x) = max
a∈A

P(a|X = x) (2.12)

In other words, the classification output should be the most probable class given the input

for any number of classes. Naturally, what makes this difficult is the fact that one has to

estimate the probabilities using a limited set of training data.

In order to provide the best possible classification with limited training data, we review

several of the more popular classification techniques [100]. The Support Vector Machine

discussed in 2.2.9, which is used in this research effort is considered arguably the best

classifier for this type of problem [100]. The basic idea of a SVM is to find the hyperplane

that separates the training data with the maximum margin [172]. By maximizing the

distance on either side to the nearest samples, the largest buffer possible is created between

each class of data decreasing the probability of misclassification. For mathematical details,

the reader is referred to [79, 100, 172].

Most methods for classification use numerical values and are unable to handle

symbolic information directly. Packet data can contain non-numerical, qualitative data

that indicates potential attacks. Converting this data into a numerical structure presents

challenges, however it greatly increases the ability for effective classification. Experiments

conducted in [80] greatly improved the classifier’s accuracy using symbolic conversion.

Outside of Support Vector Machines, other classification algorithms that were

considered but not chosen for this research assignment are:

31

• Gene Expression Programming [138]

• Maximum Entropy Classifier Logistic regression [70]

• Naive Bayes Classifier [148]

• Neural Networks [79]

• Quadratic Discriminant Analysis

• Binary Classifier Tree [100]

Gene expression programming (GEP) is an evolutionary algorithm that creates

complex tree structures that learn and adapt by changing their sizes, shapes, and

composition, much like a living organism [138]. GEP has been criticized for not being

a major improvement over other genetic programming techniques. In many experiments, it

did not perform better than existing methods [138].

Maximum Entropy Logistic regression is a regression model which generalizes

logistic regression by allowing more than two discrete outcomes [70]. Greene published a

book entitled, Econometric Analysis, on this type of classification [70]. Logistic regression

assumes that all data is case specific, meaning that no overlap in cases can exist. This along

with other assumptions from the text [70] make this classifier incapable of performing the

necessary functions for MFIRE.

A Naive Bayes Classifier is a simple approach for the complex classification. A naive

Bayes classifier works by assuming the presence of a given feature is unrelated to the

presence of any other feature [148]. One advantage of a naive Bayes classifier is that it

requires very little training data to estimate the parameters necessary for classification.

Because independent variables are assumed, only the variances of the variables for each

class need to be determined and not the entire covariance matrix [148]. Comprehensive

32

comparisons with other approaches, including SVMs and Neural Networks, showed that

Bayes classification is outperformed by these and many other approaches [148].

Artificial Neural Networks (ANN) is a wide family of different algorithms and

methods. A neural network consists of an interconnected group of artificial neurons, and

it processes information using a “connectionist” approach to computation [108]. In most

cases, a neural network is an adaptive system that changes its structure during a learning

phase [179]. Neural networks are used to model complex relationships between inputs and

outputs or to find patterns in data. ANNs are designed much like a decision tree, however

through training an adaptive system can move decision nodes to improve classification [25].

Neural Networks were designed to decide between multiple classes, unlike Support

Vector Machines which require wrapper methods to convolve the two-class classification

to a multi-class classification [108]. For this reason one might consider neural networks

the obvious choice for a classifier. Neural Networks are an excellent classifier for many

experiments, including intrusion detection, however SVMs have been shown to outperform

ANNs in cases with limited training data, good feature selection prior to training, and cases

where rapid classification is necessary [179].

Neural networks other advantage over SVMs besides the multi-class design, is that the

Neural Network is designed to continually learn (reinforcement learning) while it classifies

[108]. This makes Neural Networks valuable for cases where the inputs regularly change.

For this reason, Neural Networks are often selected for classifying user interest on product

advertisements such as Amazon, Google, and Netflix [177].

2.2.8 Clustering.

Algorithms that derive the decision or discriminant function using prototype patterns

or training data are called supervised algorithms for learning [79]. Clustering seeks to

identify the natural groupings of the data without the use of labeled data and is therefore

classified as unsupervised learning. Typically, the number of groupings or clusters is not

33

known beforehand, making the clustering process partially subjective. It is up to the user to

determine whether certain groupings are one large cluster, or two, or many based on their

relative distances from each other and to the other members of its cluster. The solution is

to either simply specify the desired number of clusters and evaluate the resulting cluster

assignments, or define some distance-based threshold from which the number of clusters

is derived. In a Network Intrusion Detection however, it is more likely to predefine the

number of attack classes that exist in an attempt to more accurately cluster the data streams.

Clustering requires a measure of dissimilarity d j(xi j, xi′ j) between values of the jth

instance [79]. Then

D(xi, xi′) ,
p∑

j=1

w j · d j(xi j, xi′ j);
p∑

j=1

w j = 1.

is the dissimilarity between objects i and i′ given the inputs xi, xi′ and weight vector w [79].

Usually, d j(xi j, xi′ j) = (xi j − xi′ j)2, but other choices are possible, or even required in the

case of non-quantitative attributes [79].

Clustering is the search for an encoder C(i) that assigns the ith of N observations to

one of K clusters. An encoder may be evaluated by measuring the between-class scatter to

within-class scatter ratio, B(C)
W(C) . Between-class scatter is defined as [79]:

B(C) ,
1
2

K∑
k=1

∑
C(i)=k

∑
C(i′),k

d(xi, xi′)

while within-class scatter is

W(C) ,
1
2

K∑
k=1

∑
C(i)=k

∑
C(i′)=k

d(xi, xi′)

We desire high B(C)
W(C) in order to achieve the goal of high between-class scatter and low

within-class scatter, thus establishing clusters with well-defined boundaries [79].

A commonly used clustering algorithm is the k-means algorithm, which is based on

minimizing a performance index, F [27]. K is the number of clusters specified by the user,

and F is the sum of squared distances of all points in a cluster to the cluster center.

34

The k-means algorithm begins by assigning each observation to the cluster with the

closest mean. As stated above, and intuition suggests; there are exactly K means that each

observation can be assigned. With each observation assigned to a cluster, the means of

each cluster are recalculated with the centroid of each cluster becoming the new mean [27].

With new values for each centroid, the algorithm reassigns each observation to the closest

mean, which may have changed due to the shift of the K value [27].

The algorithm is deemed to have converged when the assignments no longer change.

In general, there is no guarantee that it converges to the global optimum, and the result is

highly dependent on the initial assignments of K. As the k-means algorithm is usually very

fast, it is common to run it multiple times with different starting conditions [27].

Other common Clustering Algorithms include: [3]

• Categorical mixture models

• Deep learning methods

• Hierarchical clustering (agglomerative or divisive)

• Kernel principal component analysis

2.2.9 Support Vector Machines.

Support Vector Machine (SVM) were originally used to solve supervised two-class

classification problems for use in the field of statistical learning theory [79, 100]. SVMs are

now capable of solving one-class and multi-class classification problems and are capable

of running in parallel in order to reduce training and classification time [173]. SVMs were

developed at AT&T by Vladimir Vapnik and are now a well-known and popular technique

for classification and regression [172]. Two-class SVMs solve classification problems by

determining an optimal separating hyperplane between the two given classes and are known

for relatively fast classification and training despite their high accuracy [100]. SVMs also

35

are capable of utilizing high-dimensional feature space to optimize the distance between

features and the separating hyperplane [173].

SVMs work by a priori learning from observed data. This model of learning by

example can be shown as three components:

1. a generator of random vectors x, drawn independently from a fixed but unknown

P(x);

2. a supervisor that returns an output vector y for every input vector x, according to a

conditional P(y|x), also fixed but unknown;

3. a learning machine capable of implementing a set of functions f (x, α), α ∈ Λ; in this

case a Support Vector Machine.

The problem of learning according to Vapnik, is choosing from the given set of

functions f (x, α), α ∈ Λ, the one which predicts the supervisor’s response most accurately

[172]. These selections are made based on the training set of data drawn according to

P(x, y) = P(x)P(y|x).

Vapnik described the Problem of Risk Minimization in Statistical Learning Theory

and SVMs by showing that in order to choose the best available approximation to the

supervisor’s response, the learning machine must measure the discrepancy L(y, f (x, α))

between the response of y from the given input x and the response provided by the learning

machine: f (x, α) [173]. Vapnik explains that the expected value of the loss between the

supervisor’s response and the learning machine can be shown as a risk functional [173]:

R(α) =

∫
L(y, f (x, α)) dP(x, y) (2.13)

The empirical risk of learning machines, specifically SVMs, in using a least square

method yields the empirical risk function [173]:

36

Remp(α) = 1/l
l∑

i=1

(yi − f (x, α))2 (2.14)

where l is the current feature and (yi − f (x, α))2 is the mean squared error.

Empirical risk is a quality estimation of the experimental expected performance of

the SVM, however the true risk must be accounted for as well in order to illustrate the

complexity of the SVM. The true risk can be given by the empirical risk plus an additional

term [173]:

R(α) ≤ Remp(α) +

√
h(log(2m

h + 1) − log(n
4)

m
(2.15)

where h is the dimensionality of the set of functions parameterized by α. This is a measure

of the functions’ complexity. The more phenomena that are described, the larger the value

of h. Therefore, h is the maximum number of points that can be separated in all possible

ways by that set of functions.

SVMs operate in vector spaces like many other learning machines. The dimension

of the vector space is determined by the number of features used. An SVM creates a

separating Hyperplane f (x) = w · Φ(x) + b that separates the individual classes most

effectively [172]. In creating the separating hyperplane, w represents the normal vector

perpendicular to the hyperplane, b is the offset from the origin, and features are mapped to

the higher dimensional space with x 7→ Φ(x). As an example the polynomial mapping of a

set of features is [172]:

Φ : R2 → R3(x1, x2 7→ (z1, z2, z3) := (x2
1,
√

(2)x1x2, x2
2) (2.16)

Figure 2.5 illustrates two hyperplanes separating the same data in sections (a) and

(b). The hyperplane in part (a) of the Figure does not maximize the margin to the two

surrounding lines. This hyperplane increases the chance that a faulty classification because

there is less of a margin of error between the two classes. The hyperplane of part (b) of

Figure 2.5 separates both data sets optimally. The margin of part (b) to the two surrounding

37

lines, representing the class borders, is maximized. The classification of a vector is

performed by determining on which side of the hyperplane the vector lies to determine

which class it belongs. By increasing the margin it becomes easier to determine which side

of the hyperplane the vector belongs on, thus increasing the classification accuracy. The

SVM in particular defines the criterion to be looking for a decision surface that is maximally

far away from any data point. This distance from the decision surface to the closest data

point determines the margin of the classifier. This method of construction means that the

decision function for an SVM is fully specified by a subset of the data which defines the

position of the separator. These points are referred to as the support vectors.

Figure 2.5 shows the margin and support vectors for a sample problem. Other data

points play no part in determining the decision surface that is chosen [120].

Figure 2.5: Poor (a) and Optimal (b) separating hyperplanes of an SVM. The poorly

separating hyperplane offers bad generalization ability whereas the optimal separating

hyperplane perfectly divides both data sets by maximizing the margin of the hyperplane

[120]

As stated above, Part (a) of Figure 2.5 features a non-optimal hyperplane. The

margin of the hyperplane is visibly smaller than the margin in part (b). How this effects

38

classification accuracy is in the generalization ability since vectors lying very close to the

hyperplane can be misclassified more easily. The difficulty of training an SVM now lies in

finding the “optimal” separating hyperplane. The hyperplane is calculated from a training

set D = (~xi, yi), where D is the data points used in the training of the classifier, and each

member is a pair of points ~xi and a class label, yi corresponding to it. A decision hyperplane

is defined by an intercept term b and a decision hyperplane normal vector ~ω which is

perpendicular to the hyperplane also called the weight vector [100]. To choose the “best”

hyperplane that is perpendicular to the normal vector, use intercept term b. All points ~xi on

the hyperplane satisfy ~ωT~x = −b. The linear classifier then becomes [173]:

f (~x) = sign(~ωT~x + b) (2.17)

And the value of -1 indicates not in the current class, where a value of 1 indicates

in the current specified class. By moving the hyperplane to a location farthest away from

points of the two classes, the optimal hyperplane is reached.

The dimensionality and complexity of Φ(x) can be very large (O(nn)), making w hard

to represent in memory, and hard to solve [172]. Kimeldorf and Wahba [96] presented the

representer theorem, which shows that

w =

m∑
i=1

αiΦ(xi) (2.18)

for some variables α. Instead of optimizing w directly we can optimize α [96]:

f (x) =

m∑
i=1

αiΦ(xi) · Φ(x) + b (2.19)

and K(xi, x) = Φ(xi) · Φ(x) is called the kernel function.

So far only the linear classification capability of SVMs is introduced. Nonlinear

classification by means of kernel functions are able to separate data which might not seem

linearly separable in an SVM. SVMs are also cpable of classifying prefiltered data [120].

39

Figure 2.6: SVM separating features with a hyperplane in a higher dimensional space [96]

Figure 2.6 illustrates a data set that would not be linearly separable without being brought

into a higher dimensional space. The two data sets are not linearly separable without

accepting many training errors because many points would reside on the wrong side of

the hyperplane. To solve the nonlinear classification problem, kernel functions, defined as

K(X,Y) = [ρ(x), ρ(y)]v, are used [96]. The purpose of the Kernel Trick is to transform

vectors from the lower dimensional input space to the higher dimensional feature space in

which the data sets become linearly separable [172]. The Kernel often uses the Gaussian

radial basis function kernel, k(xi, x j) = exp(−λ||xi−x j||
2) f or λ = 1/2φ [100]. Other Kernels

for nonlinear classification include Polynomial homogeneous, Polynomial inhomogeneous,

and Hyperbolic Tangent [118].

SVMs have shown good results in data classification, but their training complexity is

very dependent on the size of the dataset. SVMs are known to be at least quadratic (O(n4))

with the number of training data points. One approach to reduce training data size is to

40

use a hierarchical clustering algorithm, as described by Horng [85]. The algorithm creates

a clustering feature tree, which is then used to merge disjoint clusters. Experiments using

this technique on the intrusion detection problem are encouraging [85].

Another interesting use of SVMs in the intrusion detection problem is introduced

in [166], which evaluates a hybrid decision-tree/SVM system. Their hypothesis is that

different classifiers are better at detecting certain attacks than others, and that an ensemble

approach using several different classifiers can exploit the misclassification and improve

performance. Experimental results support this assessment [166].

To this point, the only discussion of SVMs is two class binary problem solvers.

Multiclass SVMs are able to assign labels to instances for a finite set of classes. The

dominant method for solving a multiclass SVM is to reduce the multiclass problem into

several binary classification problems and combining the results [101].

The common methods for reducing multiclass decision problems are one of the labels

and the res, known as the one-versus-all approach, or between every pair of classes; one-

versus-one. Other methods for such reduction include the use of Directed Acrylic Graph

SVM (DAGSVM) and error correcting output code [101].

Crammer and Singer [157] propose the use of an SVM method which casts the

multiclass classification problem into a single optimization problem. This avoids the

process of decomposing the problem into multiple binary classification problems.

Crammer and Singer propose that starting with set S = (~x1, y1, ..., ~xm, ym) be a set of m

training samples, a multiclass classifier maps using the function H : X → Y each instance

of ~x to an element y of Y. The form of the classification process is [157]:

Hm(~x) = arg maxk
r=1[~MR · ~x] (2.20)

41

where M is a matrix of size kn over R and ~Mr is the rth row of M. The inner product of

the rth row of M is the similarity score or confidence of the r class. To construct a multiclass

predictor, the misclassification error becomes the following piecewise linear bound [157]:

maxr[~Mr · ~x + 1 − δy, r] − ~My · ~x, (2.21)

where δp,q equals 1 if p = q and 0 otherwise. The above bound is zero if the confidence

value for the correct label is larger by at least one than the confidences assigned to the

rest of the labels. Otherwise, the value suffers a loss which is linearly proportional to

the difference between the confidence of the correct label and the maximum among the

confidences of the other labels. A graphical illustration of the above is given in Figure 2.7.

The circles in the figure denote different labels and the correct label is plotted in dark grey

while the rest of the labels are plotted in light gray. The height of each label designates its

confidence. Three settings are plotted in the figure. The left plot corresponds to the case

when the margin is larger than one, and therefore the bound maxr[~Mr · ~x + 1− δy, r]− ~My · ~x

equals zero and is correctly classified. The middle figure shows a case where the example

is correctly classified but with a small margin and suffers some loss. The right plot depicts

the loss of a misclassified example.

Figure 2.7: Margin Bound for Multiclass SVM [185]

42

Although SVMs apply optimal classification techniques when binary classification

is necessary, when decomposed into multiple binary classification problems this is not

always the case for multiclass problems [109]. [110] shows an alternative for multiclass

problems using a Multicategory SVM. The multicategory SVM implements the “optimal”

classification rule as the sample size gets large, overcoming the sub-optimality of the

conventional one-versus-rest approach. Their method deals with the equal misclassification

cost and the unequal cost case in unified way.

The basic principals of the method are similar to those of Crammer and Singer, where

a matrix is formed of the j possible classes, and a data point belonging to that class is

mapped to that class with a value of 1. If it is not part of that class it is marked with a -1.

The main problem with this then becomes over-fitting the data. Misclassification leads to

a penalty if the data is not separable, however fitting the data too closely leads to a penalty

as well. This set of rules allow the SVM using Gaussian Radial Basis function to use the

best dimension in finding all of the linear hyperplanes. The crux of their methodology is

the following Lemma:

Lemma: The minimizer of E[L(Y) · (f (X) − Y)+] under the sum-to-zero constraint is:

f (x) = (f1(x), ..., fk(x)) with: f j(x) = {1 i f j = arg maxl=1,...,k pl(x), − 1/k otherwise}.

Notice that the minimizer is exactly the representation of the most probable class.

Hence, the classification rule induced by f (x) is naturally φ(x) = arg max j f j(x). If

f (x) is the minimizer in the Lemma, then the corresponding classification rule is φ −

B(x) = arg max j p j(x), the Bayes rule for the standard multicategory case.

Support Vector Machines suffer from a scalability problem in both memory use

and computational time. To improve scalability developers have created a parallel SVM

algorithm (PSVM) [109], which reduces memory use through performing a row-based,

approximate matrix factorization, and which loads only essential data to each machine to

perform parallel computation. Let n denote the number of training instances, p the reduced

43

matrix dimension after factorization, and m the number of machines or cores. PSVM

reduces the memory requirement from O(n2) to O(np/m), and improves computation time

to O(np2/m).

A short subset of popular SVM packages is located in Appendix D.

2.3 Intrusion Detection

The previous section described the field of pattern recognition, including classifica-

tion. Applying classification techniques on the AS-level of a network allows for the detec-

tion and characterization of malicious activity.

Intrusion Detection Systems (IDS) fall into two pairs of categories: host-based or

network-based; and anomaly-based or signature-based 9. Recognizing malicious activity

on a computer network is called Intrusion Detection, and it is the job of the IDS [29].

A Host-Based Intrusion Detection System (HIDS) monitors and analyzes the network

packets on its network interfaces. It was the first type of IDS and consists of an agent

on a host that identifies intrusions by analyzing system calls, application logs, file-system

modifications, and other host activities. A HIDS monitors the dynamic behavior and the

state of the network. In a HIDS, sensors usually consist of a software agent. An example

of a HIDS is OSSEC [42].

A Network Intrusion Detection System (NIDS) is an independent software platform

that identifies intrusions by examining network traffic and monitors multiple hosts. Its

main function is to discover unauthorized access to a computer network by analyzing traffic

on the network for signs of malicious activity. Network intrusion detection systems gain

access to network traffic by connecting to a network hub, network switch configured for

port mirroring, or network tap. In a NIDS, sensors are located at choke points in the

network to be monitored. Sensors capture all or part of network traffic and analyze the

content of individual packets for malicious traffic. An example of a NIDS is Snort, an open

source NIDS developed by Martin Roesch and maintained by Sourcefire Inc. [1].

44

An Anomaly-Based Intrusion Detection System (ADS) works by detecting computer

intrusions and misuse by monitoring system activity and classifying it as either normal or

anomalous. Typically, these systems begin by determining normal operating conditions

for bandwidth, protocols, ports and device connections. The classification is based on

heuristics or rules, rather than patterns or signatures, and detects any type of misuse that

falls out of normal system operation. This opposes signature based systems which can only

detect attacks for which a signature has previously been created [9].

In order to determine what is attack traffic, the system must be taught to recognize

normal system activity. This is most often accomplished with artificial intelligence

techniques, including neural networks and classifier systems. Another method, known as

strict anomaly detection, is to first define the normal usage of the system using a strict

mathematical model, and flag any deviation from this as an attack. CFEngine developed

by Mark Burgess has support for this technique [33], as well as RRDTool by Tobi Oetiker

[137].

Anomaly-based Intrusion Detection does have some short-comings, namely a high

false positive rate and the ability to be fooled by a correctly delivered attack. Attempts

have been made to address these issues through payload-based techniques used by PAYL

[178] and MCPAD [142]. Signature-based systems have a very low false-positive rate, but

are more limited in the types of attacks they can detect. Novel attacks which are designed

to thwart signature-based systems may still be detectable by an anomaly-based system.

Details of terminology and specific concepts of intrusion detection are further

discussed in Appendix E.

2.4 Flow-based Intrusion Detection

The traditional idea of a network flow, as defined in [187], is a unidirectional data

stream between two computer systems where all transmitted packets of this stream share

the following characteristics: IP source and destination address, source and destination

45

port, and IP protocol. Thus, all network packets sent from host A to host B sharing the

above mentioned characteristics form a flow. Every communication attempt between two

computer systems triggers the creation of a flow, even if no connection is established. In

the simplest case, a complete flow is well-defined when a complete flow set-up and tear-

down are observed, as is the case with most TCP communications. Complexity in any

flow definition occurs when the set-up is incomplete or tear-down is abnormal. UDP is

notoriously troublesome because it is connectionless protocol.

In addition to the above mentioned core characteristics, several other properties of a

flow can be conveyed, for instance:

• The number of packets which have been transferred

• The number of bytes which have been transferred

• The start or end time of a flow

• The disjunction of all TCP flags occurring in the flow

Figure 2.8: Network flow

Figure 2.8 illustrates a bidirectional communication between two computers which

results in the creation of two flows. Host A is the initiator of the communication and

has the IP address 10.0.0.1. Host A sent several packets to host B which is assigned the

IP address 10.1.1.2. The source port of this communication is 4312 on host A whereas

the destination port is 80 on host B. All the network traffic is monitored by the NetFlow

46

router. The communication finally results in two unidirectional network flows. The first

flow (illustrated as grey squares) describes the communication from A to B and the second

flow (illustrated as white squares) from B to A.

Winter [187] describes a technique to collect network flows on actual hardware, with

a commercial package called NetFlow. NetFlow runs on Cisco routers and collects flow

statistics which it sends to a central collector. A separate device can poll this collector

to run analysis on current flows in the network. MFIREv3 does not use live network

flows – instead all traffic is simulated. However the NetFlow architecture provides a well-

known framework for modeling flows, and this model is useful in discussing this research

investigation.

A useful set of real-world flow data and metrics is provided by Andrew Moore

[133]. Real network traffic was collected over a 24-hour period at a research facility

with approximately 1000 active workstations. Individual flows are constructed from this

data, and labeled as idle, interactive (two-way), or bulk (one-way). Only data and metrics

corresponding to the TCP protocol are collected; UDP and ICMP are ignored. Flows are

characterized into 249 metrics.

However, one does not need to observe a specific TCP connection or tear-down to

use flows. A microflow abandons such concepts in favor of observing traffic in a more

immediate fashion. This concept treats flows as a collection of packets to/from nodes, but

does not distinguish bi-directional flows; everything is treated as one-directional. These

flows are robust to incorrectly formatted TCP connections and tear-downs because they

do not rely on those actions for measurement. A disadvantage is that microflows lose

potentially useful information, including the cumulative time that a connection has been

established, or the amount of data sent since the beginning of a connection. A good

comparison between the usefulness of both approaches for the ID problem is provided

in [177].

47

In the environment used in this research effort, TCP is not specifically implemented;

rather everything behaves like UDP. Because of this, mircroflows are the obvious choice.

2.5 Network Attacks of Interest

This section discusses five common types of network attacks: distributed denial of

service, vulnerability scans, worm propagation, man-in-the-middle, and Trojans or Trojan

Horse attacks. A taxonomy of network and computer attacks is located in Appendix B.

We focus on attacks which cause significant changes in traffic flows. Background on other

attacks can be found in [159].

2.5.1 Denial of Service Attacks.

Mirkovic [130] presents a comprehensive taxonomy of different DDoS attack types,

Figure 2.9. We concentrate on flood attacks [162], although the MFIREv3 environment

is capable of simulating a Semantic or other DoS model as well. A flood attack involves

malicious agents sending large volumes of traffic to a victim system, to congest the victim

system’s network bandwidth with IP traffic with the victim’s own legitimate resources.

The victim system slows down, crashes, or suffers from saturated network bandwidth,

preventing access by legitimate users.

Formal models for DDoS and their detection are proposed in the several articles. One

method applied to DDoS detection is the k-nearest neighbor (kNN) algorithm with feature

weighting and selection based on a genetic algorithm [129]. Overall accuracy of over 97%

for known DDoS attacks is achieved, and over 78% in the case of unknown attacks.

Scepanovic [150] focuses on the scenario in which a cluster-based filter is deployed at

the target network and serves for proactive or reactive defense. A game-theoretic model is

created for the scenario, making it possible to model the defender and attacker strategies as

mathematical optimization tasks. The model is based on the continuous nonlinear knapsack

48

Figure 2.9: Taxonomy of DDoS Attack Mechanisms [122]

problem [66]. The experimental outcome shows the high effectiveness of cluster-based

filtering in proactive and reactive DDoS defense.

Once service is denied or begins suffering bandwidth reduction the DDoS is detected,

however early detection is important [141]. If a target can detect an attack before the

actual damage occurs, the target can win more time to implement attack reaction and

protect legitimate users. Second, if attacks can be detected close to attack sources, attack

traffic can be filtered before it wastes any network bandwidth. However, there is generally

insufficient attack traffic in the early stage of an attack and at links close to attack sources.

Consequently, it is easy to mistake legitimate traffic as attack traffic. Therefore, it is

challenging to accurately detect attacks quickly and close to attack sources.

Finally, flash crowds are very similar to DoS attacks, which can cause network

congestion and service degradation. However, flash crowds are caused by legitimate traffic,

49

whereas DoS attacks caused by malicious traffic. Hence, it is important to differentiate DoS

attacks from flash crowds so that targets can react to them separately.

DoS attacks can be easily detected since the target’s services degrade as the attack

manifests. False positives are a serious concern for DoS attack detection. Since the

potency of DoS attacks does not depend on the exploitation of software bugs or protocol

vulnerabilities, it only depends on the volume of attack traffic. Consequently, DoS attack

packets do not need to be malformed, such as invalid fragmentation field or malicious

packet payload, to be effective [141]. As a result, the DoS attack traffic can look very

similar to legitimate traffic.

2.5.2 Vulnerability Scans.

A vulnerability scan is used to conduct network reconnaissance. A remote attacker

usually attempts to gain information or access to a network on which it is not authorized

or allowed. Network reconnaissance is increasingly used to exploit network standards and

automated communication methods. The aim is to determine what types of computers

are present, along with additional information about those computers; such as the type

and version of the operating system. This information can be analyzed for known or

recently discovered vulnerabilities that can be exploited to gain access to secure networks

and computers. Network reconnaissance is possibly one of the most common applications

of passive data analysis. Numerous tools exist to make reconnaissance easier and more

effective.

A port scan is an attack that sends client requests to a range of server port addresses

on a host, with the goal of finding an active port and exploiting a known vulnerability of

that service [154]. The result of a scan on a port is usually generalized into one of three

categories:

• Open: The host sent a reply indicating that a service is listening on the port.

• Closed: The host sent a reply indicating that connections are denied to the port.

50

• Filtered: There was no reply from the host.

Potential security concerns exist for both the program responsible for delivering a

service (on open ports), and with the operating system that is running on the host (on open

or closed ports). Filtered ports do not tend to present vulnerabilities. There are many

standard scanning formats, some of which follow standard Internet protocols, others which

purposefully do not [159]. Some common techniques are outlined:

TCP CONNECT scan—The simplest port scanners use the operating system’s network

functions. If a port is open, the operating system completes the TCP three-way handshake,

and the port scanner immediately closes the connection. Otherwise an error code is

returned. This scan mode has the advantage that the user does not require special privileges.

However, using the OS network functions prevents low-level control, so this scan type is

less common. This method is noisy, particularly if it is a complete sweep of all ports: the

services can log the sender IP address and Intrusion detection systems can raise an alarm.

TCP SYN scan—SYN scan is another form of TCP scanning. Rather than use the

operating system’s network functions, the port scanner generates raw IP packets itself, and

monitors for responses. This scan type is also known as “half-open scanning”, because it

never actually opens a full TCP connection. The port scanner generates a SYN packet. If

the target port is open, it responds with a SYN-ACK packet. The scanner host responds

with a RST packet, closing the connection before the handshake is completed.

The use of raw networking has several advantages, giving the scanner full control

of the packets sent and the timeout for responses, and allowing detailed reporting of the

responses. SYN scan has the advantage that the individual services never actually receive a

connection. However, the RST during the handshake can cause problems for some network

stacks, in particular simple devices like printers.

UDP scan—UDP is a connectionless protocol so there is no equivalent to a TCP SYN

packet. However, if a UDP packet is sent to a port that is not open, the system responds with

51

an ICMP port unreachable message. Most UDP port scanners use this scanning method,

and use the absence of a response to infer that a port is open. However, if a port is blocked

by a firewall, this method falsely reports that the port is open. If the port unreachable

message is blocked, all ports appear open. This method is also affected by ICMP rate

limiting.

An alternative approach is to send application-specific UDP packets, hoping to

generate an application layer response. For example, sending a DNS query to port 53

results in a response, if a DNS server is present. This method is much more reliable at

identifying open ports. However, it is limited to scanning ports for which an application

specific probe packet is available. Some tools (e.g., nmap) generally have probes for less

than 20 UDP services, while some commercial tools (e.g., nessus) have as many as 70. In

some cases, a service may be listening on the port, but configured not to respond to the

particular probe packet.

TCP ACK scan—ACK scanning is one of the more unique scan types, as it does not

exactly determine whether the port is open or closed, but whether the port is filtered or

unfiltered. This is especially good when attempting to probe for the existence of a firewall

and its rulesets. Simple packet filtering allows established connections (packets with the

ACK bit set), whereas a more sophisticated stateful firewall might not.

TCP FIN scan—Firewalls are, in general, scanning for and blocking covert scans in

the form of SYN packets. FIN packets are able to pass by firewalls with no modification to

its purpose. Closed ports reply to a FIN packet with the appropriate RST packet, whereas

open ports ignore the packet on hand. This is typical behavior due to the nature of TCP,

and is in some ways an inescapable downfall.

2.5.3 Worms.

It is vital to detect active worms effectively. In the near future active worms may spread

across the whole Internet in a very short period of time, making the average detection time

52

critical. A common way to detect worms is to place sensors in a network to monitor

messages sent to non-existent IP addresses. Administrators of networks are aware of

exactly which IP addresses are in use in their domains, and common worm attacks do

not have access to this information. If a message is sent to a non-existent IP, then this flags

the sender as suspicious [39]. Attackers that wish to build stealth into the system must take

preliminary steps to discover a network map prior to initiating the worm.

Many models exist for worm propagation [39, 95, 111, 151, 176, 193, 194]. The basis

of many of these is the general epidemic model, which considers a fixed population size N

where each individual can be in one of three states: susceptible to the disease (S), infected

(I), or removed (R) [111]. In networking terms, removals can occur if the victim is taken

offline or becomes immune (patched) to the infection. The normal state progression for an

individual is S → I → R, normally termed an SIR model. But in the networking domain,

victims who recover and do not obtain immunity to the infection become susceptible again:

S → I → S , an SIS model. Also known as the Epidemiological Model, this is formally

represented as:
dn
dt

= β(1 − n) − dn (2.22)

where n(t) is the fraction of infected nodes, β is the infection parameter, and d is the death

rate. The solution to the above equation is

n(t) =
n0(1 − ρ)

n0 + (1 − ρ − n0)e−(β−d)t (2.23)

where ρ = d
β

and n0 ≡ n(t = 0) =
sizeo f hitlist

N = h
N

2.5.4 Man-in-the-Middle and Eavesdropping.

The Man-in-the-Middle (MiM) attack is a form of active eavesdropping in which the

attacker makes independent connections with the victims and relays messages between

them, making them believe that they are talking directly to each other over a private

connection, when in fact the entire conversation is controlled by the attacker [154]. The

53

Table 2.1: Parameters for the spread of active worms [111]

vulnerable machines N number of vulnerable machines

Size of hitlist h number of infected machines at the beginning of the

spread of active worms

Scanning rate s average number of machines scanned by an infected

machine per unit time

Death rate d rate at which an infection is detected on a machine

and eliminated without patching

Patching rate p rate at which an infected or vulnerable machine

becomes invulnerable

attacker must be able to intercept all messages going between the two victims and inject

new ones, which is often a simple task for an attacker [111].

A MitM attack can succeed only when the attacker can impersonate each endpoint

to the satisfaction of the other often times requiring the issuing of false authentication.

Most cryptographic protocols include some form of endpoint authentication specifically

to prevent MitM attacks. For example, SSL can authenticate one or both parties using a

mutually trusted certification authority.

Figure 2.10: Illustration of SSL Thwarting MitM Attack

54

MitM attacks do not normally flood networks with traffic or attempt to spread once

they reach the target node of a system. This makes detection unique for the MFIRE system,

as there is very little indication that the flow between two or more nodes has been changed.

However, compared to normal traffic flow the packet exchange rate becomes statistically

noticeably slower [169]. This concept is illustrated in an effort by Tartakovsky et al. in

2.11.

Figure 2.11: Detection of MitM Attack in UDP Mode [169]

According to cyber security experts, “the man-in-the-middle attack has been shown

to be one of the most serious threats to the security and trust of existing protocols and

systems” [192]. A major source of the threat is the inability to permanently remove the

threat from the system and detection is difficult if the attacker remains quiet.

Quite simply, MitM attacks are very difficult to perform on systems with SSL or

similar authentication. Advanced attacks though might be capable of deceiving the

authentication process. The speed of dataflow between nodes decreases by definition with

55

a MitM and detection of this slowdown is essential. On a broad spectrum, the detection

of MitM due to decreased flow speeds is shown as a good detection mechanism by many

research attempts [169]. Without propagation throughout the network however, no tests

have proposed solutions for detecting the attack on a large network with few intrusion

detection agents. Where the detection of a worm, DDoS, or scan becomes an issue of

catching the intrusion before it propagates too far, MitM presents the issue of having the

attack located at all on a very large system.

2.5.5 Trojans and Back-doors.

Unlike the worm, scan, and DDoS, a Trojan Horse is utilized for the creation of a

vulnerability. A Trojan is a malicious application that masquerades as a legitimate file but

instead enables an attacker unauthorized access to the system. Trojans do not attempt to

inject themselves into other files like a computer virus or worm, but rather create a back

door, destroy a single system, or steal information by updating it to an outside source.

Trojans may use drive-by downloads or install via internet-driven applications in order

to reach target computers. Trojans often utilize social-engineering in order to install

themselves on the host-computer [131].

Rather than focusing on the Trojan itself, the detection goal is truly locating the back-

door created by the initial attack. Creating a back door allows unauthorized access to

the system for an attacker from which the attacker could easily run any number of other

attacks such as DDoS, worms, and scans, or simply steal valuable information. As long as

the back-door remains ajar, the system remains highly vulnerable even if initial attacks are

thwarted [131]. It is even possible that the initial attacker leaves a back-door open without

intent to attack the system again, and a new attacker, finding the vulnerability via network

scan, exploits the vulnerability for painless access to the system.

Back-doors are typically very difficult to detect if they are not known by the standard

anti-virus software [131, 139]. Trojans conceal their presence by executing as a plug-in

56

or as a dynamically-linked library. Many have very little immediate impact on the normal

operation of a system and so are difficult to detect by the user. These characteristics enable

Trojan Horses and Back-doors to go undetected for a significant period of time, providing

the attacker with a large window of vulnerability on the system [131, 139].

A small subset of the known Trojan exploits include [139]:

• PWSteal.Tarno.Q logs passwords and information typed into specific webforms such

as banks. Propagating via email attachments, this Trojan registers as a browser helper

similar to a toolbar. The stolen information is periodically transmitted back to the

attacker via hard-coded url.

• Trojan.Lodeight.A code tries to install malicious code on the compromised computer

and opens a Back-door on TCP port 1084. When this Trojan is executed, it connects

to one of two predefined websites, downloads a remote file and then executes it. This

remote file may be any arbitrary program, including a Beagle worm.

• Trojan.Vundo is part of an adware program that presents the user with pop-up

advertisements. By exploiting a Microsoft Internet vulnerability, a downloader

component is executed on the victim. It then retrieves an adware component by

connecting to a specific IP address. The adware is injected into dierent processes as

a DLL. Besides displaying advertisements on the infected machine, it also degrades

performance by decreasing the amount of virtual memory available

Trojans and Back-doors display five common characteristics [146]:

• The malicious code is executed without user intervention.

• The malicious code may be directed by a remote attacker once a connection is made.

• Resources used by the malicious code, such as file names and network addresses, are

hard-coded in the binary.

57

• OS resources (processes, memory) used by the malicious code may be consumed for

the purpose of degrading performance.

• They cannot be invoked by the attacker and are autonomous at least until a

connection is made.

Figure 2.12: Event Classification Abstraction Levels for Harrier [40]

One formal model of the attack and detection of a back-door intrusion by Cheng et al.

[40] called Harrier uses the approach of breaking data flows into five categories of resource

types: User Input, File, Socket, Binary, and Hardware. Besides monitoring the source of

the data flow, which is important for detecting back-door access to the Internet as opposed

58

to a legitimate user, their model also incorporates Event Monitoring illustrated in Figure

2.12.

2.6 Multi-Objective Optimization

A Multi-Objective Evolutionary Algorithm (MOEA) is utilized for finding the

“optimal” subset of a set of points representing conflicting objectives. Multi-Objective

Optimization (MOO) is the process of simultaneously optimizing two or more conflicting

objectives under certain constraints, and a useful process for this optimization is MOEAs.

Multi-Objective Optimization is also known as Multi-Objective Programming, Pareto

Optimization, Multi-Criteria Optimization, or Multi-Attribute Optimization [103]. Pareto

Optimization refers to the process of finding the optimal or Pareto front of points for all of

the conflicting criteria. Since two or more conflicting objectives require multiple solutions

where one objective improves to the detriment of the conflicting objectives, a front of all of

the optimal solutions is produced. This front of non-dominated, optimal solutions is known

as the Pareto Front [103].

2.6.1 Multi-Objective Problems.

Multi-Objective Problems (MOPs) exist in almost every field of business and decision

processes. Common scenarios requiring optimization over multiple criteria include any

business decision with cost vs. quality. Optimal decisions need to be taken in the presence

of trade-offs between two or more conflicting objectives [63].

For nontrivial MOPs, one solution that optimizes every objective does not exist. While

searching for solutions, improving one objective further often results in the decline of the

other objectives [63]. A tentative solution is called non-dominated or Pareto optimal if

it cannot be eliminated from consideration by replacing it with another solution which

improves an objective without worsening another one. Finding such non-dominated

solutions leads to the development of an optimal front of solutions where choosing any

solution from the front is not any worse than another solution, because any other choice

59

would require at least one objective to suffer for the improvement of other objectives [168].

After a Pareto Front is created the decision maker must choose what solution from the front

is best based on what the decision maker determines is most important to keep and what is

an acceptable sacrifice when it comes to the multiple objectives [63, 103].

2.6.2 Stochastic Search.

In a complex Network Intrusion Detection System agents take on a number of

parameters determining attack classification, agent movement, sensors, and any other

parameter improving the system. With the large degree of data gathered by each parameter

and the complexity of meeting multiple objectives, finding the optimum solution or

solutions is not possible. In many cases, one or more of the objectives is a Non-

Polynomial Complete (NPC) problem. Stochastic search techniques allow the location

of good solutions quickly that are not necessarily optimum solutions.

Recognizing a good solution for a Multi-Agent System or other MOP is an easier

function to perform than finding a good solution. Recognizing a good solution simply

requires comparing the current solution to the previous solutions or a set of previous

options, while finding a good solution requires searching intractable space for optimal

solutions. Stochastic search algorithms allow for finding near-optimal solutions to

problems with large numbers of solutions along a Pareto Front [168]. Stochastic search is

useful on problems that can be formulated as finding a solution maximizing or minimizing

a criterion among a number of candidate solutions. Search algorithms move from solution

to solution in the space of candidate solutions by applying local, until a solution deemed

optimal is found or a time bound is elapsed.

The hill climbing local search algorithm is a commonly known, simple local search

algorithm. Hill climbing involves starting with an arbitrary or previously chosen solution,

followed by attempting to incrementally find a better solution by changing a single element

of the solution utilizing Depth-First Search (DFS). If the change produces a better solution,

60

that change becomes the new solution. This process repeats until the final solution cannot

make any incremental changes that improve its state [11].

A problem with simple hill climbing is that it suffers from a tendency to get stuck

at a local optimum and fails to search for greater global optima. Some improvements to

the algorithm attempt to mitigate this tendency and allow the search to move to global

optima include stochastic hill climbing, random-restart hill climbing, hill climbing with

backtracking and Tabu search [43].

An Evolutionary Algorithm (EA) is a type of stochastic search that utilizes the

principals of biological evolution as inspiration for local search. Reproduction, mutation,

recombination, and selection applied to candidate solutions or individuals of the population

allow for the algorithm to evolve towards optimal solutions [11, 43, 168]. EAs evolve

solutions over generations of applying the organic operator methods. The evolutionary

process aims to keep a balance of the best candidates as well as a number of non-optimal

solutions in order to keep diversity in future generations and avoid moving towards a local

optima.

Bäck Evolutionary Algorithm Formalism [11]: Optimization as a minimization of a

function f : M ⊆ Rn → R, M , ∅ consists of searching for ~x∗ ∈ M such that f (~x∗) > −∞

and

∀~x ∈ M : f (~x∗) ≤ f (~x)

The goal is to find the global optimum ~x∗ for the objective function f within the

feasible region M, however time constraints make reaching this goal unlikely. Instead,

the best solution found given time or another constraint is selected.

Evolutionary computation begins by initializing a population of candidate solutions.

Each candidate solution consists of a vector of parameters proposed as solutions for

the optimization problem. The fitness of candidate solutions is then measured by the

61

given parameters and candidate solutions are then ranked or graphed for selection in the

reproduction phase of the algorithm. In the case of a single objective EA, the quality of a

solution could be measured as a single value. For a MOP the strength of a solution could

still be measured as a single value if it is simply a weighted sum of all of the objectives,

however it is more common for the quality to be represented as a vector. Members chosen

for reproduction into the next generation are selected by their fitness values as well as

keeping diversity within the population. After selection of the candidates based on fitness

and diversity, selected individuals then undergo recombination and/or mutation to produce

new candidate solutions. Recombination produces offspring by combining the objective

values of parent similarly to passing genes from two parents to a child. Mutation only

involves one parent and simply changes specific parameter values as a means of exploring

the solution space. The resulting population consist of the best solutions from parents,

offspring, and mutations. If an offspring or mutation does not yield a more optimal solution

than the previous generation, it is likely not kept in the population. After reproduction, all of

the solutions are evaluated for fitness and then the selection process repeats. The selection

process continues until some stopping criteria is reached such as number of generations

completed, performance fails to improve, or acceptable performance achieved.

The basic Evolutionary Process is outlined in Algorithm 1.

In all cases of computation the decision maker (DM) desires that only a few

solutions are available for ease of decision. With a Multi-Objective Evolutionary

Algorithm (MOEA), the algorithm is attempting to optimize a vector objective function

with constraints between multiple conflicting objectives. It is desired that an MOEA

generates MOP solutions in Ptrue which provide a trade-off of performance efficiency and

effectiveness [14].

MOEAs have a great advantage over other MOP search techniques they are capable of

encoding individual solutions in numerous straightforward representations as chromosomal

62

Algorithm 1 Evolutionary Algorithm Process
Generate the initial population of individuals

Evaluate the fitness of each individual in that population

while Stopping Criteria Not Met do

Select the best-fit individuals for reproduction - parents

Breed new individuals through recombination and mutation

Evaluate fitness of new individuals

Select the best fit individuals to be parents for next generation

end while

objective values. Although the No Free Lunch (NFL) Theorem [76] implies that MOEAs

are not universally robust solutions for all MOPs, in general the Problem Domain model

does not need to be modified for an MOEA. This makes understanding the search process

significantly easier as much of the information remains in its native form [11].

Achieving the exact Pareto front for any given MOP is difficult and often not

acceptable given reasonable time constraints. MOEAs allow for reasonably good

approximations of PFtrue in limited computational time. The purpose of MOEAs is to find

these acceptable approximate Pareto fronts and Pareto optimal solutions within a given

error. Types of Evolutionary Algorithm Techniques Include

• Genetic algorithm [14]

• Gene expression programming [58]

• Evolution strategy [11]

• Memetic algorithm [46]

• Differential evolution [165]

63

• Nueroevolution [164]

• Learning classifier system [171]

2.7 Multiagent Systems

A common design question for any IDS is how to maximize the benefits and minimize

the penalties associated with network-based as well as host-based approaches. The MAS

paradigm offers a way to accomplish this, with the added advantages of flexibility and

robustness provided by this approach.

Russell and Norvig [149] define a single agent through several properties: autonomous

operation, ability to perceive the environment, persistence over a long period of time, ability

to adapt to change, and ability to create and pursue goals. These goals are typically in

support of a broader objective. Franklin and Graesser [62] provide a survey of definitions

for software agents, and an associated taxonomy.

Multiagent systems can be used to solve problems that are difficult or impossible for

an individual agent or a monolithic system to solve. A multiagent system is a collection of

agents that collaborate, explicitly (e.g., via cooperation) or implicitly (e.g., via competition)

to achieve a broad objective or series of objectives. The main feature which is achieved

when developing multi-agent systems is flexibility, since a multi-agent system can be added

to, modified and reconstructed, without the need for detailed rewriting of the application.

These systems also tend to be rapidly self-recovering and failure proof, usually due to the

heavy redundancy of components and the self-managed features.

In the networking domain, if agents are required to be mobile, then all hosts in the

network must have a generic agent platform installed which provides the environment in

which the agent executes. Agent migration then consists of sending agent state to a remote

process responsible for reinstantiating the agent.

Jansen lists some specific advantages of a mobile, agent-based IDS [90]:

64

• Overcoming network latency - if an agent is present on a node requiring remedial

action, the agent can respond more quickly than if action must be initiated by a

central coordinator

• Reducing network load - Communication requirements are reduced by allowing

agents to process sensor data locally, instead of requiring each node to send sets

of sensor observations to a central processing location. Sharing the results of local

processing incurs a relatively light demand on bandwidth.

• Autonomous execution - surviving agents continue to operate when part of the IDS

fails

• Platform independence - agent platforms with standard interfaces may be written for

multiple operating systems to allow effective MAS execution in a heterogeneous OS

environment

• Dynamic adaptation - the system can be reconfigured during run-time in a variety

of ways. The mobility of the agents allowing them to seek effective positions is a

reconfiguration. Agents can clone themselves or request assistance from other agents

in high demand situations. Selected agents can be replaced while non-selected agents

continue to operate. One can also update repositories of behaviors and parameters

which agents access periodically.

Potential disadvantages include decreased performance and/or increased resource

consumption when mobility is implemented ineffectively. Also, since each agent is a

member of a trusted network that, if compromised, could provide the attacker considerable

leverage, digitally signed communications (including migrations) are essential.

Multiagent systems provide countless research opportunities in the field of intrusion

detection, as illustrated by [90], and many other fields of complex problem solving [167].

65

The three areas of interest for this research effort include distributed systems, autonomous

self-organizing agents, and adaptive agents.

When talking about a problem, one might ask, why distribute the intelligence? The

main reason to distribute intelligence in computer systems is to decompose a complex

problem by breaking it into many less complex problems with a subsystem designed to

solve each part. If each subsystem performs its action efficiently the problem can be

conquered effectively [57]. A home builder does not need to know the process of creating

lumber; the builder just needs the wood to build the house. In intrusion detection with

multiple agents, an agent does not need to know the exact data another agent calculated,

just whether or not the agent located an intrusion and its location [181].

Further rational for the use of distributed intelligence is that the problem itself is

physically distributed [57]. A single agent simply cannot adequately monitor hundreds

of nodes to detect for intrusions. Multiple agents must collaborate in order to monitor the

physical distribution of nodes on the network.

Problems are also widely distributed in terms of functions. Not one entity can be the

knowledgeable expert for every part of a complex system [181]. A race car driver is not an

expert in tire production, engine construction, and fuel refinement. It is too burdensome,

and even if this driver was an expert in all of these facets, would one expect this well

educated driver to individually perform all of these tasks prior to each race? MASs allow

heterogeneous agents, meaning agents with different specialties or tasks to perform [57], to

work together in order to complete a complex task such as network classification.

Collaboration and self-organization is required among agents in distributed systems.

Besides the heterogeneous nature of problems within a complex network, problems

often present complexity in the form of difficult calculations or multiple objectives and

constraints [167]. Each agent must take care of its own local problems and communicate

the results to its collaborating agents. Focusing on the local problem allows for the parallel

66

processing of a larger objective, while communicating necessary and important results

(summary) to the collaborating agents allows for self-organization in the form of organizing

tasks and providing alerts if the agents need to adapt to system changes [57].

A great example of collaboration among local entities completing a global task is air

traffic control towers. The amount of data, constraints, and parameters with multiple failure

points makes a single controller model impossible for maintaining the system of global

flights. Instead local air traffic controllers take care of the inbound and outbound flights

from their airport, much like an agent monitoring a node, and only communicate necessary

information to other towers. One example of vital information that requires communication

that leads to adaptation and self-organizationis an emergency landing. If a flight requires

an emergency landing, the towers and aircraft must communicate the needs of the system

to adapt the flight patterns for an unexpected landing [167].

This scenario is not unlike a network under attack. MFIREv3 is meant to allow agents

to adapt to a dramatic change in the environment when a network intrusion takes place.

Agents must communicate the effects of the attack and reorganize to classify and address

the intrusion.

Another form of adaptation within a MAS, besides its role in self-organization, is the

possibility of an agent to adapt its own focus [57]. Agents are meant to perform specific

tasks efficiently and effectively, however unforeseen changes in the environment could

reduce or increase the necessity of an agents primary task [181]. For instance, a set of

X agents in the MFIREv3 model each are capable of identifying one specific type of attack.

If all of the agents capable of detecting a Worm propagation suddenly failed, the remaining

agents would select a subset of agents to take on the feature recognition capabilities of a

Worm propagation to prevent the network from the vulnerability of an undetected Worm

attack.

67

For a detailed description of Multiagent Systems and Distributed Multiagent Systems

see [57, 90, 167, 181]. The following section details the concepts of reputation and trust

among agents in a Multiagent System.

2.8 Reputation and Trust

In the general sense, reputation is what is generally said or believed about an agent’s

character or standing [92]. The pursuit of an adaptable multi agent system achieving

Meadows’ notion of self organization [124] leads to the need for a way to effectively govern

the agents’ communication and mobility patterns.

We consider the use of reputation to achieve this purpose. Reputation is defined as

the collective observation, by a society, of a particular agent’s past behavior. A reputation

system provides publicly-available assessments of agents’ trustworthiness based on ratings

from past transactions [155].

Trust, on the other hand, is a subjective internal measure by which a particular agent

makes use of the reputation of and its own record of direct experience with other agents to

govern its interactions [88].

A variety of trust models exist. Huynh et al. [88] review three distinct modeling

approaches:

• Mechanisms deriving trust via certificates, rules, and policies

• Centralized trust mechanisms in which witness observations are collected by a central

authority; also known as centralized reputation mechanisms

• Decentralized systems

In each model, the agent evaluating the trustworthiness of another is called an

evaluator, while the evaluated agent is called the target. The evaluator may query witnesses

with direct experience with the target. The witnesses respond to the evaluator’s queries with

68

Evaluator

Target Witness(es)

rates

 1..*

query

 evaluates

report rating

Figure 2.13: Generic trust model: conceptual relationships [77]

ratings. The collective ratings impact the target’s reputation, which the evaluator uses along

with internal criteria to determine the target’s trustworthiness. Figure 2.13 demonstrates a

generic view of the relationships between the evaluator, target, and witnesses [77].

Trust and reputation are central to effective interactions in open multi-agent systems

(MAS) in which agents, that are owned by a variety of stakeholders, continuously enter and

leave the system. Such a concept of reputation focuses on the difficulty for agents to form

stable trust relationships necessary for confident interactions. This implies an environment

in which individual agents are greedy, able to make their own decisions, and not necessarily

seeking to optimize the good of the system.

Many computational and theoretical models and approaches to reputation have been

developed [53, 88, 147, 155, 189]. In all cases, electronic persona are created, which reflect

the specific forum under evaluation.

MFIREv1 and MFIREv2 relied on a centralized reputation system with the goal of

indicating the level of service one agent expects to get from another. The basis of a

centralized approach is the same as that of online rating systems employed for shopping

[147]. Following an interaction, a witness conceptually rates the target according to the

perceived level of service received. The rating is stored centrally and combined with

69

other ratings to allow the centralized evaluator to determine the resulting reputation. This

reputation can then be used as a criterion by which other agents or online shoppers decide

whether to trust the reputation holder.

The first objective of this research effort uses a different definition of reputation. In the

commonly described system, agents do not make decisions on their own. Agents simply

use the available local observations in order to make a classification, which is sent to a

central agent controller. The controller dictates to individual agents whether they should

move to a new location. In this sense, agents are simply the eyes of a single central

controller and cannot be enticed to perform any individual actions. The elimination of

a central controller allows the agents to choose freely their location based on reputation

and movement criteria. The movement criteria encourages exploration of the network to

areas not under observation by other agents. This feature eliminates the possibility of

“piggy-backing” on another agents search.

One example of a multiagent system using Reputation is SPORAS [189], in which

new agents start with a minimum reputation value, and build up reputation during their

time on the system.

The rules of the MFIREv3 Reputation system are listed in Algorithm 2.

The first two rules discourage users from simply creating new accounts to escape

the consequences of a series of bad interactions. But one can imagine environments in

which migration should be encouraged, such as when the service an agent can provide is

dependent on the agent’s location. In such cases, a migration threshold may be set below

the restart value. In this way, reputation may be used to govern the mobility patterns in the

multi agent system. This is one of the desired behaviors of our system and is thus part of

the movement model.

Other research contained in [88, 147, 155] demonstrate other approaches.

70

Algorithm 2 MAS Classification
1) New users start with a minimum reputation value, building up reputation during their

activity on the system

2) The reputation value of a user never falls below the reputation of a new user

3) After each transaction, the reputation values of the involved users are updated

according to the feedback provided by other parties, which reflect their trustworthiness

in the latest transaction

4)Users with very high reputation experience much smaller rating changes with each

update

5) Ratings must be discounted according to age so that the most recent ratings have more

weight in the evaluation of a user’s reputation

We can consider the concept of Reputational Incentives defined in [34]: the truster

calculates the reputational gain (or damage) that a trustee experiences as a result of good

(or bad) feedback being communicated to the society, and considers this as an additional

incentive. Pertaining to the intrusion detection problem, a trust model is defined by [19],

and also makes use of the NetFlow concept of flows.

2.9 Defensive Measures of Network Agents

Automated defense of a network intrusion can provide another barrier for intrusions

set on disrupting a network. A wide range of automated defense techniques exist of varying

effectiveness, complexity, and also ethicalness [127].

The Department of Defense (DoD) conducted a 90-day exercise consisting of 30 cyber

defense companies on the issues pertaining to automated defense [127]. The conference

focused on the issues pertaining to the prevention of attacks as opposed to the current

response techniques common in network security. A major issue with preventing attacks is

71

the legality and ethics with striking a threat before or after an attack with a cyber attack of

one’s own [158].

The present state of network security consists of what we shall refer to as passive

defense. The defensive measures do not engage an attacker outside of the network itself.

Instead passive defense aims to respond to a known intrusion and stop it, while possibly

gathering information on the attacker location [9].

One common form of passive defense is the Honey Pot. A Honey Pot is a trap set to

detect, deflect, or in some manner counteract attempts at unauthorized use of information

systems. Generally it consists of a computer, data, or a network site that appears to be part

of a network, but is actually isolated and monitored [157]. A Honey Pot seems to contain

information or a resource of value to attackers, but the information is merely a distraction

to monitor the attacker for possible location [127].

Another form of automated attack defense is rate limiting. Rate limiting helps

preventing flooding of from Denial of Service (DoS) attacks. According to many tests,

rate limiting is a formidable reactionary response against flooding DoS attacks [132]. Rate

limiting is simply the application of rules to a network to limit traffic flow. Since the

purpose of a DoS attack is to flood the network with malicious traffic, rate limiting prevents

the attack from spreading outside the compromised node quickly. This makes targeting the

correct node quickly a much easier task, and it also prevents the destruction of network

resources. While the rate limiting rules are applied however, the rate at which normal

traffic passes through the network is hindered as well [83].

Many pieces of literature propose other reactionary defense mechanisms such as

killing of active network connections, filtering, reconfiguration, re-imaging, artificial

immune systems, and source-traceback mechanisms [83].

Killing of active network connections of infected nodes is a quick method of

containing the attack. In most cases this simple measure can immediately stop a Denial of

72

Service attack or a Scan [9]. In cases of Worm propagation attacks, the “flood gates” must

close all around every infected node on the network or else the Worm simply propagates

from the areas still connected to the network [9].

Reconfiguring the network often confuses many automated attacks as well as human

attackers. Certain reconfiguration measures can help force an attack into non-critical areas

of the network, away from sensitive data, and into Honey Pots [6]. Re-imaging infected

nodes simply sets the node back to factory defaults and removes the infection [127].

Artificial immune systems are a growing field in network defense. Immune systems

work to by learning about attacks as they occur in order to build up “immunity” in future

cases [158]. The procedure also works to repair attacked and infected system nodes by

re-imaging nodes to get them on-line and stop the spread of malicious traffic [158].

None of these passive reactions to network intrusions, including rate limiting and

source traceback mechanisms, are considered ethically unsound. All of these defenses

are metaphorical pieces of armor, with the exception of source traceback mechanisms,

designed to withstand the bullets of malicious attacks. The source traceback mechanism is

simply a locater to find out where the “bullets” originated. These mechanisms provide no

threat to the outside Internet as all of the defensive procedures are internal to the network.

The idea of defensive measures being internal to one’s own network follows the

ideology of safeguarding owns home or other property. In general, safeguarding one’s

property is encouraged, however leaving the property after it the attack in order to seek

retribution from the attacker might cross certain legal and ethical boundaries [158].

Active defense is a relatively new concept in network security, although it stems from

an idea as old as time [83]. Network administrators of high-value companies wish to do

more than build up the metaphorical armor of network security. Armor wheres down under

a constant barrage of attacks, and even the best armor has vulnerabilities. It only takes

73

locating one vulnerability for an attacker to render the rest of the defensive measures useless

[9].

This is the plight of network security administrators. Attackers constantly barraging

their systems with attacks in hopes of finding a vulnerability, but the network being attacked

is not allowed to strike back. Certainly attackers would be less willing to go after a system

if it was known that the network security team, or automated agents, would be allowed to

fight back with malicious code as well.

The broad definition of active defense is any measure originated by the defender

against the attacker. The purpose of any computer network defense is to protect information

systems [158]. These active measures should at least thwart any attack in progress, and

ideally make further attacks more difficult. We can divide them into three broad categories:

counterattack, preemptive attack, and active deception [83].

Active deception directs the attacker to a virtual model of the network or a Honey

Pot [83]. The attacker believes the attack is destroying the targeted system when in fact

the attacker is no longer a direct threat. Active deception is effectively an active Honey

Pot, where the defender actually attempts to push the attacker towards the trap as opposed

to letting the attacker stumble into it. This type of defense does not provide any ethical

dilemma, since all of the action still takes place in the defenders own network [157].

The ethical dilemma is reached with counter-attacks and preemptive attacks to a

network. Much like their names suggest, a counter attack is a direct attack by the defender

on the attacker’s network during or immediately following an attack [83]. A preemptive

attack is one where the defender knows the attacker is preparing for an attack and strikes

the attacker’s system before the attack can take place.

The idea of preemptive attacks presents the greatest amount of skepticism as a morally

acceptable defensive strategy. Attackers are not likely to advertise that they are going to

attack a specific network, with certain exceptions in cases involving Anonymous, LulzSec,

74

and similar groups [127]. Having malicious code on ones one computer is not illegal, and

therefore the only crime committed in a case of preemptive attack is by the “defender”

[127]. Even if a group such as Anonymous states that they are going to attack a specific

company, the IP addresses of the attackers is unknown unless the company was already

illegally searching for the group. Preemptive attacks in the name of defense follow the

same logic as attacking a man at his home because he threatens to hurt you the next day.

The main difference however, between attacking a man at his home and attacking

his network resources is that in the former case, laws, police, and the justice system are

capable of handling physical disputes. In many recent cases of network attacks, there does

not appear to be any sort of law enforcement capable of deterring criminals. Confusing

international laws and no real effective “Internet police”, leave companies with viable assets

wondering how to protect themselves [127, 157].

This “cyber wild-west” makes the morality of counteracts against known attackers a

debatable discussion; although the illegality remains concrete . Counter attacks involve

locating the attacker’s network resources and attacking them with a Worm or DDoS the

same way a normal attack would take place. In some cases, the counter attack may try

to install programs that help discover the physical location of the attacker in order to help

prosecution for criminal offenses [127]. Regardless of ethical and legal issues pertaining

to counter attacks, commercial industries with valuable or sensitive data are resorting to

these measures and if the “Internet police” are unable to handle hackers in their mother’s

basement, it is unlikely that they are able to catch the professional security officers as well

[127].

2.10 Summary

This chapter considers, in Section 2.1, the Autonomous System level Internet topology

and traffic modeling requirements in order to conduct the desired objectives. This is

followed in Section 2.2 by a discussion of the prototypical Pattern Recognition system as a

75

template for what our system must implement and accomplish. In particular, our research

implements a classification system. Evaluation of classification systems is consequently

discussed in Section 2.2.7. Section 2.3 examines pattern recognition in the context of

identifying malicious network activity, which is known as intrusion detection; particular

consideration is given to flow-based techniques. In Section 2.7, a brief discussion of multi

agent systems and their applicability to intrusion detection is presented. To achieve a degree

of ‘self-organization’ as defined in this list, Section 2.8 considers the notion of reputation.

A far broader way to achieve self-organization via the use of Evolutionary Computation is

presented in Section 2.6.2. Also, the evolving definition of Multi-Objective Optimization

emergence is addressed in Section 2.6. Outside the realm of detection, identification, and

self-organization, section 2.9 presents measures taken by networks and agents to aide in

the protection of the network.

The next two chapters employ these concepts in the presentation of multi agent system

designs for detecting, classifying, and countering network attacks.

76

III. MFIREv3 Design Methodology and Implementation

An updated MFIRE design is required per the goals and objectives of section 1.2

for autonomous classification of network attacks in a model type network. This research

builds upon the MFIRE framework of Hancock [77] and Wilson [185] by adding additional

attack features, introduced in section 3.2.5. MFIREv3 implements an improved attack

classification system with feature selection in section 3.3. Furthermore, in Section 3.5 we

integrate features proposed by Holloway [84] to allow agents to behave in more elaborate

ways and take a roll in the defense of the network. This chapter develops these design

concepts.

Section 3.1 formalizes the problem of Intrusion Detection we solve with this research

effort with Section 3.2 detailing the design of the simulation environment. The methods

for agent classification training are deigned in Section 3.3. The design methodology of

testing the defensive aspects of agents in the network is discussed in Section 3.5. A short

discussion of the visualization environment and a summary conclude the chapter.

3.1 Intrusion Detection System Formalization

Intrusion Detection (ID) system design is an ongoing process. Simulating network

environments and traffic creates controlled scenarios providing insight into detection

capabilities of agents. The multi agent system, with several performance-enhancing details,

is leveraged in this design in order to maximize the performance. The agents are designed

to be mobile and cooperative in terms of sharing feature observations and defense. Over a

series of simulated attacks, MFIREv3 searches for optimal agent locations for both effective

detection and defense of attacks.

The design of a suitable network simulation environment involves the representation

of essential network components and operations. Specifically, nodes must route traffic,

77

generated by processes, over links with limited capacity, in a topology reflective of what is

seen in the real Internet (see Section 2.1). Some of the processes represented are normal,

generating traffic according to distributions seen on the real Internet, while other processes

represented are malicious, causing congestion on network links, systematically extracting

information regarding potential vulnerabilities of network nodes, or spreading copies of

themselves to other nodes without authorization.

Enabling the properties described in such a simulated network environment requires a

both representation of traffic as content-bearing packets as well as facilities for delivering

these packets to specific destination processes. Many facilities for instantiating a network

complete with its nodes, links, processes, and properties of each already exist and are

utilized in this research. To aide in the understanding of high-level traffic patterns,

Intrusion Detection, defensive measures, and agent movement, visualization facilities must

be considered as well.

3.2 Simulation Environment

The package hierarchy provides a framework in which to place the required

representations of MFIREv3. In addition to the network simulation environment, a

multi agent classification system is designed as a set of processes, with components

including agents and an optional agent controller. To support the agents’ classification

responsibilities, interfaces are designed for classification techniques and feature definitions,

enabling changes in detailed implementations without requiring changes to the system

architecture. Lastly, the defense system is supported by the MAS and classification system

to provide supplemental support for the elimination of network threats.

A detailed History of the MFIRE design, from its origin in SOMAS [84], is located in

Appendix A.

78

Figure 3.1: MFIRE v3 Package Diagram.

Figure 3.1 presents a general view of the package hierarchy involved in the simulation.

Highlighted regions are additional implementations to MFIREv3. Also, the agent controller

and manager are not used in this version, however they remain in the framework. The

controlled, one-way dependencies between the visualization layer, the domain layer

(MFIRE), and the application layer (MASON) exhibit a software engineering principle

known as Model-View Separation [106]. This principle states that domain objects should

not have direct knowledge of view (UI) objects. It allows the visualization layer to be

79

changed without requiring any changes in the domain or application layer. The domain

layer (MFIRE) consists of the following groups of classes:

• Network - includes representations of physical domain entities of interest. This is the

‘core’ of the simulation.

• Scenarios - concrete realizations of the abstract MFNetwork. The prominent class

is the TopgenNetwork, which includes facilities for loading a network produced

by the Topgen AS-level Internet topology generator. Each class in this package is

characterized by a a unique set of Processes initially running on a subset of the nodes.

• Processes - These are analogous to the networked applications on the real Internet.

Each Process runs on a host node and may receive and/or generate traffic.

• Payloads - Specially crafted payloads execute code when opened by a certain

receiving processes. These payloads can be written for legitimate purposes, such

as Remote Procedure Calls (RPC), but our focus is on payloads that install malicious

processes on the receiving node.

• Multi agent system - This package includes the “worker bees” - the Agents, the

“queen bee” - the AgentController, as well as AgentManagers with special local

oversight of any Agents on the same host node. In this version of the MFIRE

system, the Agent Controller and Managers are bypassed by the agents direct

communication in a fully distributed system, however the Controller and Managers

can be reinstantiated with minor changes to the test.

• Agent Defense- This package allows agents to take an active roll in eliminating

network threats. The current version includes the ability to shut down a compromised

node, limit traffic flow, and gather information of the attack location if available.

80

• Classification - Agents make use of entities in this package to make local

classification decisions. Included are the classification algorithms, enclosed in the

‘classifiers’ package, and the observations and features used. Strictly speaking, both

observations and features are statistics-based calculations, but we distinguish the

observations as being more “raw” than the features. By ‘feature’ we imply there

is something composite in its nature - it may be an average of observation values or

the result of some other series of mathematical operations on the observations and/or

other features.

At the top of Figure 3.1 is the MASON discrete event simulation engine package.

MASON provides many facilities for the execution of the simulation as well as the

visualization tools. The details of the visualization are specified via entities in the

visualization package at the bottom of the diagram.

Figure 3.2 shows the class diagram of MFIREv3. Architectural detail of some of the

prominent classes is provided, however it is not a comprehensive listing. The diagram

provides some of the essential class associations between the agents, provider agents,

attacks with the MFIREv3 network simulation.

3.2.1 Network Design.

From Section 3.2.1 we discuss how network topology is the arrangement of various

nodes within a computer network. There is both a physical and logical topological

structure, where the physical model illustrates the locations of the nodes and their

interconnections while the logical model illustrates the data-flow between components

within the network. The physical network components simulated in this research

investigation include [77]:

• Nodes - each node represents an Autonomous System (AS). Internal to an AS is

a collection of routers, switches, firewalls, and edge devices, including servers and

81

Figure 3.2: MFIREv3 class diagram.

clients. These devices are all abstracted into one node in our simulation, represented

by the MF Node class in Figure 3.2. Nodes route traffic via routing tables, initialized

via the Floyd-Warshall shortest path algorithm [61]. This is analogous to gateway

routers employing BGP on the real Internet, though with BGP, policy decisions often

trump routing efficiency (competing Internet service providers, for example, may

82

refuse to allow ‘through’ traffic without compensation). Each node is addressable

by a unique identification number. Nodes provide resident processes with basic

communications facilities, such as the send() method, which creates and sends

packets. Nodes implement the Steppable interface and therefore supply a step()

method invoked on each timestep of the simulation. This method primarily switches

packets from the inbound queues of all NodeInterfaces to the outbound queues of

NodeInterfaces identified in the routing table, via lookup on the packet’s destination

address.

• NodeInterfaces - These are intermediaries between Nodes and 1) Links; or 2) Node’s

resident Processes. The first case includes all external-facing interfaces, while the

second describes the Node’s internal interface. Each is an entry/exit point. All

NodeInterfaces have an inbound queue and an outbound queue. The inbound queue

is read by the attached Node and written to by the attached link. The outbound queue

is read by the attached link and written to by the attached Node.

• Ports - associated with nodes, ports are the communication end points for processes

running on servers and clients. In the real world, each computer typically has many

thousands of ports associated with each transport-layer protocol. For example, there

are 216 ports available for Transmission Control Protocol (TCP) and another 216 for

User Datagram Protocol (UDP), the number being fixed by the width of the port field

in the segment, respectively datagram header [143, 144]. In our simulation, each port

on an AS node corresponds with a port on an arbitrary host internal to the AS.

• Port Directory - Certain “well-known” ports are reserved for special purposes. This is

the case with the real Internet, for which a list is maintained by the Internet Assigned

Numbers Authority (IANA) [2] specifies how certain ports are to be used, such as

port 80 for Hyper Text Transfer Protocol (HTTP) traffic. When these standards are

83

adhered to, finding public services is greatly simplified. Also, filtering of certain

expected types of traffic becomes simple. Observe that, in our simulation, some

ports are reserved for components of the multi agent system.

• Links - links in our network simulation are strictly point-to-point and connect

autonomous systems together. Links are full duplex but have finite bandwidth.

Depending on the scale of the simulation, links may vary in length, affecting

propagation delay. One of three scales is specified at the start of each simulation:

– LOCAL - All links have the same unit length. Packets traverse these links in

one step of simulation time.

– REGIONAL - Link lengths vary from one to ten units. This is useful when the

simulated AS topology spans a continent.

– GLOBAL - Link lengths vary from one to 100 units. This is appropriate for

simulation of an AS topology in which some of the nodes are satellites in

geostationary orbits, for which propogation delays can indeed be on the order

of 100 times those of terrestrial links.

Scale is realized with each link being composed of sublinks. Links implement the

Steppable interface. Each timestep, when the Link’s step() method is called by

the Schedule, the Link causes each Sublink to pass its traffic to its adjacent Sublink

(or, ultimately, NodeInterface).

• Processes - these include processes that strictly generate traffic for the benefit of the

simulation as well as classifying agents that generate actual communication traffic

(primarily to share observations). All processes run on nodes and must be assigned a

port before they can send and receive packets. Processes implement the Steppable

interface. When step() is called, the Process first receives and processes traffic, and

then generates outbound traffic.

84

• Packets - Each packet consists of the following:

– Source node address - identifies the Node of origin

– Source port - the port used by the sending Process

– Destination node address - identifies the Node hosting the intended recipient

Process

– Destination port - communication endpoint for the intended recipient Process

– Sequence number - Facilitates sending messages spanning multiple packets

– TTL - Time To Live - the number of hops allowed before some intermediate

Node discards the packet. This mitigates problems arising from routing loops

induced by congestion or misconfiguration of the routing tables.

– Payload - a string containing the message the sending Process wishes to pass

to the intended recipient. The format of this message is entirely up to the

communicating processes.

– size - Indicates the size of the payload, in numbers of characters, if a real

payload is used. If a real payload is not required (e.g. to simulate background

traffic or junk traffic sent by denial-of-service processes), the sending Process

can simply specify the desired size of the packet to be sent, leaving the payload

string null and preserving memory.

During initialization, after all network components have been instantiated, all

Processes, Nodes, and Links are scheduled to execute associated tasks on each timestep.

They are prioritized as follows:

• 1. Processes handle received traffic and generate new traffic

• 2. Nodes handle traffic by switching packets from inbound queues to appropriate

outbound queues or ports

85

• 3. Links move traffic along component Sublinks toward the NodeInterfaces on either

end

3.2.2 Multi Agent System Design.

Section 2.7 proposed that the common design question for any Intrusion Detection

System (IDS) is how to maximize the benefits and minimize the penalties associated with

network-based as well as host-based approaches. This section discusses our methodology

in maximizing the benefits of a Multi-Agent IDS while minimizing the penalties using a

distributed system.

Figure 3.3 presents a high-level view of the nominal flow of execution from the

perspective of the MAS. Five states are shown. Figure 3.3 indicates that the transition

from each state is governed by the clock. This implies synchronization among participating

elements. Typical message exchange for each state is shown in Figure 3.4. Figure 3.4 is

similar to the message passing scenario introduced by Hancock [77], however the central

controller is replaced by multiple agent providers shown as Agent P.

The explanation of MFIRE’s high-level states is made simpler by assuming agents

have been collecting observations from their respective host nodes for nearly a full cycle

when it comes time to check in with their Provider. Furthermore, each agent is assumed to

have a reputation stored with their Provider.

• Check-in: Agents notify the provider of their intention to participate in the next round

of observation exchange and classification. The provider notes the source address and

port of each CHECKIN message. Each agent must have a provider, however not each

agent is required to be a provider.

• Transition: The provider makes an observation sharing assignment for each Agent

that checked in. It does this by constructing a roulette wheel from the reputations of

86

Figure 3.3: MFIREv3 Activity diagrams for the Agent

other checked-in Agents. This roulette wheel is used to make a sharing assignment

stochastically with preference given to Agents with higher reputations. The provider

notifies the selected Agent with an ASSIGN message.

• Assignments: Selected Agents receive assignments. Some Agents may receive

multiple sharing assignments, while others receive none. For each assignment

received, the Agent stores the address and port for the designated recipient as

contained in the ASSIGN message.

• Transition: End the current observation cycle, calculate features, and start a new

observation cycle. Observations are traffic statistics collected on each timestep. At

the end of each observation cycle, there exists an Observation set for each traffic

statistic measured. Features typically summarize one or more of these Observation

87

Figure 3.4: MFIRE Activity Diagram Message Exchange

sets. Agents calculate Feature values and store them for later use. Any Agents with

sharing assignments also send their set of Feature values to all assigned recipients

using SHARE messages.

• Observation Exchange: Agents wait to receive SHARE messages. Each Agent

expects to receive one.

• Transition: Agents use two classifiers to make two classifications for the network

activity observed over the previous cycle. One of these uses only locally calculated

88

feature values, while the other uses the combined set of local and received feature

values. Agents send the results to the provider agent in a RESULTS message.

• Results: The provider agent receives RESULTS messages from all checked-in

Agents.

89

Algorithm 3 MAS Classification
denote classification by agent ai at time t using only local feature values as lit

denote classification by agent ai at time t using combined local and shared feature values

(e.g. from peer agent a j) as cit

denote the majority classification at time t as mt

denote network activity classes asAk ∈ A for 1 ≤ k ≤ K

denote the vote tally for network activity classAk at time t as vkt

Require: 0 ≤ θl ≤ 1

procedure MASClassification(θl)

for all received RESULTS messages resultsit do

if resultsit contains a combined classification cit then

add 1 to the vote tally vkt forAk for k = cit

else

add θl to the vote tally vkt forAk for k = lit

end if

end for

mt = k : vkt = max
h

vht where 1 ≤ h ≤ K

return mt

end procedure

• Transition:

– The Providers tally the votes. In each RESULTS message, the vote is the

classification made using the combined local and shared feature value sets.

When this is not available because the Agent never received a SHARE message,

the Provider uses the classification made using only the local feature value set,

weighted for less influence. The system’s classification is the majority vote.

90

See Algorithm 3, in which θl represents the weight of a classification derived

from local feature values only.

– The Providers update each Agent’s reputation as introduced in section 2.8.

For each Agent, each sharing assignment it had garners a rating which can

positively or negatively affect the reputation. Every Agent furthermore has

its reputation decayed regardless of whether it had a sharing assignment, and

regardless of whether it checked in. See Algorithm 11.

– The Provider sends each Agent in its subset a STAY or a MOVE instruction

based on whether the Agent’s reputation is above or below a threshold.

• Wrap-up: Agents wait to receive MOVE or STAY. Upon receiving MOVE, an Agent

selects a neighboring node based on Max Cover, last visited, and proximity to area of

interest (possibly attacked or vulnerable node). It also sends a MIGRATE message

to the node’s it may provide for and updates its location for its provider as well.

Figure 3.5 shows the flow of execution of the Agent and the Provider independently.

From this figure it can be deduced that when an agent is acting as a provider it has merely

two states: it is either waiting for Agents to check in, or it is waiting for the Agents to

send their results, with significant actions taking place on the transitions between states as

described above. Meanwhile, a search Agent has a collection of synchronization-related

states, and three of the nominal states described above. It is either waiting for an ASSIGN

message from the providing agent, or it is waiting for a peer to send a SHARE message, or

it is waiting for a MOVE or STAY message from its provider.

91

Figure 3.5: MFIREv3 detailed activity diagrams for the agent provider and the agent

92

Table 3.1: Comparison of MFIRE Iterations

MFIRE MFIREv2 MFIREv3

AS Network Scale ‘local’ only ‘local’, ‘regional’,

‘global’

‘local’, ‘regional’,

‘global’

AS Network Size 10 nodes 100 nodes 100 nodes

AS Network Topology manually designed produced by Internet

topology modeler

produced by Internet

topology modeler

Node Behavior restricted processing

capacity / shut down

under heavy load

unrestricted process-

ing

unrestricted process-

ing

Packet Payloads simulated quantity

only

payloads used

for interprocess

communication

payloads used

for interprocess

communication

Attacks DoS DDoS, Worm, Scan DDoS, Worm, Scan.

MitM, Trojan

MAS communications out-of-band, instan-

taneous

in-band with

network-based

delays

Fully Distributed,

in-band with

network-based

delays

Feature Selection wrapper method/

Bhattacharya

none MOEA

MAS Objective Identify Source and

Target of DoS At-

tack

Identify Type of At-

tack

Identify Attack and

Provide Active De-

fense

SVM Kernel Gaussian Gaussian Linear and Gaussian

93

Table 3.1 summarizes the key differences between this research, the system that is

quantitatively tested by David Hancock [77], and the system implemented by Timothy

Wilson [185]. In general, MFIREv3 features similar networking as in previous

experimentation, with improved feature selection, improved classification, full distribution

of agent communication, increased attacks, multiple attack classification, and defense

features.

3.2.3 Simulated Network Traffic.

For this effort we utilize our own representative data, known as Synthetic Data, as

opposed to real world data. Synthetic Data is production data that is not obtained directly

from an existing network [59].

Multitudes of reasons exist for choosing Synthetic Data over real network data.

Primarily, synthetic data is generated to meet specific needs or certain conditions that may

not be found in the original, real data. The DARPA Dataset for Intrusion Detection is

commonly criticized by experts as being an “outdated dataset, unable to accommodate the

latests trends in attacks” [170]. It is based on real-world network intrusions, however the

attacks no longer reflect the same statistics desired in training a Multi-Agent System.

Newer datasets do not contain adequate attack scenarios either. Instead, the data

reflects more normal conditions as opposed to the attacks necessary for training agents

[73]. University of California Irvine’s data repository presents many datasets that are out

of date or do not reflect the types of attacks necessary for our research.

Finally, many datasets are proprietary, classified, or incomplete. The anti-virus

software companies and government agencies keep very important records of intrusion

data, however releasing the data for public interpretation could lead to a rapid advancement

in attacks [10]. Quite simply, the most accurate information on current network attacks is

not available for public use.

94

Since none of the current repositories present the adequate datasets necessary for

our research we must instead create synthetic data as is done in many research efforts

concerning fraud detection, data mining, confidentiality systems and as is our case,

intrusion detection [170]. The algorithms and overall effectiveness of the system therefore

represents its ability to interpret the synthetic data. One cannot ascertain that the same

accuracies exist when placed on a real-world network, however the synthetic data is meant

to model existing traffic.

The purpose of using synthetic data is to test the algorithm’s effectiveness in a

controlled environment, but the environment itself needs to be as close of a model to real

attacks and network flow as possible for the test to have any meaning. Fabricating network

traffic involves creating background traffic for a normal “base” system, and manipulating

the base traffic for each attack according to what effect the attack would have on network

traffic [107].

As stated above, the normal (base) mode consists of only background traffic. For this

the Pareto model [100] described in Section 2.1 is used with parameters α = 2.0, and

C ranges from 0.01 to 0.1, randomly selected prior to each simulation. All other attacks

models also use this background traffic with additional traffic reflected in their attacks.

The fabricated synthetic data, following the Pareto model, adequately reflects real

world network traffic to the necessary degree for testing our simulation and showing proof

of effectiveness [100].

3.2.4 Observations and Features.

Each observation in MFIREv3 represents a traffic statistic collected over the duration

of a single time period. These are used to derive feature values, which are the average and

standard deviation of the observations within one observation period. We take inspiration

for flow metrics from both Cisco NetFlow [187] and Moore [133], with emphasis on

implementing metrics applicable to microflows (see Section 2.4). The fourteen metrics

95

defined here represent a cross-section of possible flow-based statistics, but future work

should examine additional metrics, including implementing a macroflow approach (see

Section 2.4 and [133]).

The fourteen observations collected by agents in MFIREv3:

1. Average number of bytes per < destaddr, destport >-tuple

2. Average number of bytes per < sourceaddr, sourceport >-tuple

3. Number of distinct destination addresses

4. Number of distinct < destaddr, destport >-tuples

5. Number of distinct destination ports

6. Ratio of destination ports to destination addresses

7. Total number of inbound bytes

8. Total number of inbound packets

9. Ratio of packets to < destaddr, destport >-tuples

10. Ratio of packets to < sourceaddr, sourceport >-tuples

11. Number of distinct source addresses

12. Number of distinct < sourceaddr, sourceport >-tuples

13. Number of distinct source ports

14. Ratio of source ports to source addresses

Clearly there are many linear dependencies in this set of observations. Care must

be exercised when performing feature selection from this set. When decomposed into the

96

84 combined features, the Bhattacharya Coefficient cannot effectively eliminate the linear

dependencies. This is illustrated in Figure 3.6, which separates the features by thousands

of bins and still fails to eliminate the dependencies. It is for this reason a Support Vector

Machine is required for classification in order to take features to a higher order. Details on

general feature selection are provided in 2.2.2, and the feature selection process utilized in

the effort is examined in 3.3.3.

Figure 3.6: Illustration of Linear Dependecies in Features

Additionally, linear separability of all 5 attacks and the normal state given a set of

three features selected by the MOEA for performance proved futile. Figure 3.7 illustrates

the overlap that would certainly lead to high misclassification rates for the agents given

the same features. Two solutions for this are examined in this research: using a higher

order, non-linear (Radial Basis Function (RBF)) classifier which was utilized in MFIREv2,

and testing multiple feature sets to linearly discriminate between two or more states of the

network. The latter approach would provide the ability to give agents different feature sets

in an attempt to improve the speed of classification by using a linear classifier.

97

Figure 3.7: Illustration of Non-Linear Separability: Magenta-DDoS Worm- Red Scan-

Green MitM-Yellow Trojan-Blue Normal-Black(Covered); Feature 1: Number of distinct

destination addresses Feature 2: Total number of inbound bytes Feature 3: Std. Dev-Ratio

of packets to (dest addr, dest port)

Figure 3.7 highlights the overlap of attack features using the same set of three features.

Each color represents one of the five attacks. There is no linear separability between attacks

using these features, however it is possible that using specific feature sets for each attacks

could improve separation.

3.2.5 Attack Models.

This research consists of modeling five attacks: DDoS, worm propagation, vulnerabil-

ity scan, Man-in-the-Middle attack, and Trojan, and one normal (non-attack) mode. These

attacks are described in Section 2.5 and represent a broad section of network intrusions.

In all cases, background traffic is flowing on the network, and is the predominant source

of packets. The attacks implemented in the current research are designed primarily to test

to the effectiveness of the MAS reputation system. They are in no way a comprehensive

suite of possible malware, but they represent a number of common attacks that both spread

98

across networks or remain static within the network. Additional attack models should be

explored in future research.

The normal (non-attack) mode consists of only background traffic. For this the Pareto

model described in Section 2.1 is used with parameters α = 2.0, and C ranges from 0.01

to 0.1, randomly selected prior to each simulation. All other attacks models also use this

background traffic.

The DDoS attack consists of N processes which flood a single target T with packets

to port p at rate r packets per timestep. N, T , p and r are selected randomly prior to

each simulation. The node locations of the DDoS processes are random, selected from any

nodes in the network. Algorithm 4 illustrates the DoS process which uses a flood of small

packets. Using the smaller packets increases the likelihood that the packet is forwarded.

Figure 3.8 shows the effect of the attack within the MASON simulation environment.

Algorithm 4 DoS Attack Algorithm
Select target
Instantiate Source nodes with DoSProcess
for (All Source Nodes) do

Determine packet size 1/1000 of link capacity
while Time not complete do

Send 1000 packets to Port P of target.
end while

end for

Worm attacks are implemented by a set of vulnerable processes running on a subset of

nodes in the network. A worm process is equipped with a single exploit that targets a single

vulnerability. If the exploit matches the vulnerability on the target node, the worm is able

to instantiate a copy of itself on the target. Worms do not scan for vulnerabilities before

attempting the attacks; they simply make an attempt. However, the worm process never

sends an attack to a non-existent node. This is only possible if the worm has previously

99

Figure 3.8: Illustration of MFIREv3 DDoS

performed a scan, or otherwise been given knowledge of the current network. The current

implementation assumes this knowledge is available to the worm a priori. Figure 3.9 shows

the effect of the worm process in the MASON environment. Algorithm 5 illustrates the

implementation of the replication worm in MFIREv3.

In a typical worm attack scenario, the attack surface is initialized by setting up several

active vulnerabilities in the environment. Next, InsecureProcesses are set up at every Node.

Each InsecureProcess is initialized with a random subset of the active vulnerabilities. The

InsecureProcesses are set to listen on a small number of ports. This is often the case in

reality, where vulnerabilities are typically associated with specific applications, and these

applications often run on a single well-known port.

100

Figure 3.9: Illustration of MFIREv3 Worm

Algorithm 5 Worm Attack Implementation
Select target node addresses
Instantiate possible vulnerabilities
List target ports
Select rate of attack (how many attack packets to send each time step)
Set up InsecureProcesses on subset of Nodes (vulnerabilities and ports)
Time parameter before worm spreads
for Worm Active (When time parameter elapses to end time) do

Send attack packets determined by rate to selected address and port
if MaliciousCode execute() is called then

Malicious payload delivered
Run WormInstaller on new HostNode

end if
end for

101

When the worm becomes active, on each timestep it sends as many attack packets

as its rate allows. Each packet is sent to a randomly selected address and port within

the initialization parameters. The packet is crafted to simulate exploitation of a randomly

selected vulnerability from its arsenal.

The effect of the worm propagation is achieved when the malicious code section

runs the program WormInstaller. It is a subclass of the abstract Payload class, which

specifies one method that must be implemented: execute(). This method is called by the

InsecureProcess if it is successfully exploited. The user can define new Payloads to run

various worm attacks. For the WormProcess, the Payload is a WormInstaller. It has the

sole purpose of installing a WormProcess on the host Node.

When an InsecureProcess receives an attack packet, it determines whether the active

vulnerability is one to which it is exposed. If so, the exploit is successful with a certain

probability. The probability is pulled from a map indexed by vulnerability number. This

value is 20% to simulate the uncertainty in a real-world attack surface caused by patching.

A vulnerability scan is modeled after simple TCP-connect port sweep. Note that the

current MFIRE environment does not implement the TCP protocol explicitly, however, all

processes within the environment are configured to mimic the effects of TCP and provide

replies to incoming packets as needed. In particular the connect message may be replied

with a response equivalent to an ACK, ICMP port unreachable, or ignored. The scan

process runs on a single random node, which sends connection requests to a random subset

of N target nodes on the network at rate r packets per timestep. The scan sends a packet to

all ports in the complete range of common port numbers. N and r are randomly selected

prior to each simulation. Algorithm 6 shows the Scan process while Figure 3.10 shows an

example block scan.

The Man-in-the-Middle attack places a new node inside the network and connects to

two randomly selected, neighboring nodes. The attack takes the exact same data transfered

102

Algorithm 6 Scan Algorithm
Initialize range of addresses and ports
Set rate parameter (how many packets sent each timestep)
Instantiate Source nodes with DoSProcess
for (All < destination; port > tuples) do

Send CONNECT payload
if UNREACHABLE is received then

< destination; port > tuple is CLOSED
Else < destination; port > is OPEN

end if
end for

Figure 3.10: Illustration of MFIREv3 Scan Report

from Node A and transfers it to Node B and vice versa. The extra node also holds delays

data transfer speeds by holding onto the communication for a short period of time before

transmitting it to the receiving node. The packets are thus delayed extra timesteps and might

expire before reaching their target. Also, the packets all contain lower time-to-death values

103

than if they did not hop through the malicious node. The implementation and illustration

are in Algorithm 7 and Figure 3.11, respectively.

Algorithm 7 MitM Implementation
Select target node A
Select target neighbor B
List target ports
Time parameter before transmitting packet
for All packets from Node A do

Read < destination; port > tuple
Hold for Time Parameter
Pass to Node B

end for
for All packets from Node B do

Read < destination; port > tuple
Hold for Time Parameter
Pass to Node A

end for

Figure 3.11: Illustration of MFIREv3 Man-in-the-Middle Attack

104

The Trojan attack, attacks a randomly selected node and makes frequent calls to the

network hub to send traffic outbound from the simulated network. This simulates the theft

of information to an outside attacker. Besides communicating with the outside attacker, the

attack slows down all traffic through the node in order to steal data. The attack also opens

many ports on the node, using the InsecureProcess developed for the Worm Propagation

Algorithm 5, to open as many access ports to the node as possible. This insures the attacker

can re-access the node if not all ports are properly secured when the attack is discovered.

The Trojan attack is illustrated below in Algorithm 8

Algorithm 8 Trojan Implementation
Select target node
Run InsecureProcess
Set rate for updates
Set time delay for packet theft
Time parameter before worm spreads
for Trojan Active (When time parameter elapses to end time) do

Send updates to outbound node
if Access port closed then

Run InsecureProcess
Find available open port

end if
end for

As stated previously, the attacks implemented in the current research are designed

primarily to test to the effectiveness of the MAS reputation system. Additional attack

models should be explored in future research as well as variations of the above attacks. The

number of variations of attacks is infinite, however flows, trends, and statistical variations

provide good statistical generalization for many of these variations.

3.3 Training the Agents

With the simulation environment completed, a priori agent training is required in

preparation for executing experiments. Training the agents is vital in providing the tools

105

to the agents in order for the to classify attacks as described in Section 2.2. Agent training

consists of generating the training data, followed by training the classifier on that data. In

general, we refer to generating training data as running in offline mode, and testing the MAS

as running in online mode. Many of MFIREv3’s functionality performs the same in both

modes, and Figure 3.12 shows the relationship between the two. In offline mode, agents do

not make classifications or move; they are merely located in the network to observe and log

flow-based traffic statistics. A classification model and scale file are the outputs generated

from this data. In online mode, agents are making active classifications and moving in the

network. The agents’ classifiers use the classification model and scale file as inputs.

Figure 3.12: MFIREv3 offline training and online testing execution paths

The entire training and testing process is described in three high-level steps:

• 1. generate training data (MFIRE offline mode)

• 2. train the classifier (external process)

• 3. test the MAS (MFIRE online mode)

106

The first two steps are conducted once. After the classifier is trained, the same

one is used in all agents, for all experimental models: reputation, free-movement,

and deterministic. The final step is performed multiple times, as needed for the final

experiments. Using the same classifier allows us to compare the effectiveness of all

three models for accuracy, speed, and functionality. Additionally, agents must have the

same classifier, even if heterogeneous features are used, to establish a standardized test to

compare agent performance. Note that steps one and three take place within the MFIREv3

framework directly, and once set up do not require user interaction. Step two requires

additional user interaction, and is conducted with external software packages.

3.3.1 Generating training data.

The purpose of generating training data is to establish a baseline of information that the

agents can use for classification of attacks in MFIREv3. The background of this process is

discussed in Sections 2.2.7 and 2.2.9. The primary software class for creating training data

is contained is DataGenerator. This executes simulations in offline mode—that is, agents

are located in fixed, random positions and do not move or generate attack classifications.

In all other respects, the simulation environment behaves exactly the same way as online

mode. To create training files, two agents are located in the network, and record all local

flow-based statistics observed at their node. These files represent raw local data only.

After all of the required simulations are performed, several functions are applied to

the local feature data. First, the two local feature files are combined to create a single

combined feature file. Recall that local features and combined features are used separately,

and an individual classifier is created for both. Local features from two different agents

are converted into three combined features: average, multiple, and difference of the two.

From this point on in the process, the local data and combined data remain distinct entities

and are treated in parallel, although they are handled in the same way. Second, the feature

107

elements are scaled to between 0 and 1, and a scale file is created, to be used later in testing.

Third, the data is split into separate training and validation sets.

An additional operation to scrub the data is added to this process as well. Scrubbing

outliers has been shown to reduce training time and improve classification generalization

by reducing overfitting [172]. This is part of the current research not formerly part of the

MFIREv2 system.

3.3.2 Training the Classifier.

The chosen classifier for this research is a Support Vector Machine (SVM) (see

[79, 100]). Classifiers are discussed throughout Section 2.2 with SVMs detailed in Section

2.2.9. SVM is selected due to its “high generalization performance without the need to add

a priori knowledge,” even in the face of many features [37]. Other classifiers present many

potential alternatives (see Section 2.2), and should be examined further in future research.

Note that the MFIREv3 environment is written to work with any classifier.

Although ANNs provide excellent qualities, the SVM outperforms a Neural Network

in many instances [177]. Feature selection provides “optimal” features allowing better

classification with an SVM. Lastly, the data flows remain relatively consistent between

attacks. There is not new information presented after training that the classifier needs to

learn.

To realize an SVM implementation, the LibSVM package [36] is selected due to its

Java integration and its useful grid search method for finding optimal training parameters.

Further details of the LibSVM package and alternative packages can be found in section

2.2.9. LibSVM provides the needed multi-class classification technique, implemented

internally as the standard one-vs-one model. We make use of the LibSVM library function

svm predict, standalone executables svmtrain and svmscale, and python script grid.py.

108

3.3.3 Feature Selection.

Feature selection is another important aspect to training a classifier. If a smaller

subset of quality features can be provided to the classifier, it is faster to train, and may

improve classification generalization by reducing overfitting. One possible approach is to

use Bhattacharya coefficient analysis [77]. Another simpler, albeit more computationally

intensive, approach is the “leave-one-out” method. In this, the classifier is tested multiple

times, each with leaving one feature out. In this way, the experimenter can see which

features are useful and which are not. This method is crude in that it treats features as

singular entities and does not consider the combinatorial effects they may have. A third

method is to do a search (see Section 2.6.2) for useful features. The search algorithm is the

primary method for feature selection used in this research effort, however on a number of

occasions the Bhattacharya coefficient is utilized for feature selection between two classes

and two features for quick comparison.

The initial simple algorithm for feature selection is shown below in Algorithm 9.

Algorithm 9 Embedded Genetic Algorithm
Initialize :Randomly generate an initial population of feature subsets encoded in binary
strings of all features.
while (not converged or computational budget is not exausted) do

1. Evaluate fitness of all feature subsets in the population based on J(s).
2. Select the elite chromosome si to undergo filter method based on local search.
3. Replace si with an improved new chromosome s′i using Lamarckian learning.
4. Perform evolutionary operators: restrictive selection, mutation, and crossover.

end while

For a given candidate solution S encoded in a chromosome, X and Y define the sets

of selected and excluded features encoded in that particular chromosome S. Each iteration

generates a population of 30 candidates over 80 iterations. The ADD operation selects

a highly correlated feature from Y and adds it to S and the DEL operator finds the least

correlated feature in X and deletes it from S. This process is illustrated in Figure 3.13.

109

Figure 3.13: Add and Del Mutations

Algorithm 9 illustrates a single objective memetic algorithm for feature selection.

It is a hybridization of a filter method based local search and a Genetic Algorithm

(GA) Wrapper method. At the start of the search, the initial population is randomly

initialized with each chromosome encoding a candidate feature subset. Each chromosome

is composed of a bit string equal to the length of the total number of available features. In

the case of the MFIREv3 design, this would be 84 features for the combined set and 24

local features for each agent. The encoding of the chromosome is simply a bit string where

a ’1’ represents the feature is included in the subset and a ’0’ represents exclusion from the

subset. The fitness of the chromosome subset is then determined using generalization error.

In order to keep chromosomes with smaller numbers of features, if two chromosomes have

110

miss rates within a certain epsilon difference, the chromosome with fewer features is given

a higher chance of surviving. The Lamarckian learning [71] forces the genotype to reflect

the result of improvement through placing the locally improved individual back into the

population to compete for reproductive opportunities.

The main shortfall of Algorithm 9 is that it does not distinguish Partial-Class

Relevance (PCR) from Full-Class Relevance (FCR). PCR features are those that are only

capable of differentiating between a subset of classes (attacks), while FCR features help

provide distinction between all classes. For the initial part of this research we want all

agents to utilize the same features, therefore FCR features provide a greater advantage.

When testing agents with different feature sets in order to detect specific attack types

with specific agents, PCR and FCR features are less vital and Algorithm 9 provides faster

selection than Algorithm 10. Future research could introduce adaptive agents that adapt

the features utilized based on the flows present in the network. For that effort, Algorithm

10 could provide the initial features for each agent. and based on a positive attack reading

choose a specific feature subset from Algorithm 9 to better classify the attack.

Each iteration generates a population of 30 candidates over 80 iterations. As

previously stated, the Single-Objective Memetic Algorithm did not distinguish between

PCR and FCR features in multiclass problems. The true FCR and PCR features are

computationally intensive to find, so in most cases they are approximated using a One-

Versus-All (OVA) scheme.

The search for optimal PCR feature subsets of k OVA sets can naturally be casted as

a multi-objective optimization problem with each objective corresponding to the feature

selection accuracy of each OVA set. The MOP considered is thus defined as:

min F(s) = (f j(s), ..., f k(s)) sub ject to s ∈ S (3.1)

111

Algorithm 10 Embedded Multiobjective Memetic Algorithm
1. t = 0
2. Initialize :Randomly generate an initial population P(t) of feature subsets encoded
with binary strings.
3. Evaluate fitness F(s) of each solution in P(t).
4. Rank P(t) using Pareto dominance and calculate crowding distance.
while (Termination Criterion not Fulfilled) do

5. Select a temporary population P′(t) from P(t) based on Pareto
ranking and crowding distance.
6. Perform crossover and mutation on P′(t).
7. Evaluate fitness F(s) of each solution in P′(t).
8. Rank P′(t)

⋃
P(t) using Pareto dominance.

9. Apply filter method based on local search on the non-dominated solutions of 8,
and generate an improved population P′′(t)
10. Rank P(t)

⋃
P′(t)

⋃
P′′(t) using Pareto dominance

calculate the crowding distance.
11. Select solutions from 10 to create a new population P(t + 1) based on
Pareto dominance and crowding distance.
12. t = t + 1

end while

f i(s) = −Acc(s, ci, c′i), (i ∈ (j, ..., k)) (3.2)

where F(s) is the objective vector, s is the candidate selected feature subset, k is the

number of classes, and S is the feasible domain of s.

Once again in Algorithm 10, the start of the search begins with a randomly generated

list of initial population solutions with each chromosome encoding a candidate feature

subset. Each chromosome is composed of the same type of bit string for inclusion and

exclusion of a feature within a candidate feature subset. In each generation the offspring

population P(t) is generated from mutating the parent population P(t). Then a non-

dominated sorting categorizes the solutions of the mating pool into levels of Pareto Fronts

and the non-dominated solutions are filtered using the ADD and DEL operations shown in

Figure 3.13. Elitism and Diversity is maintained based on Pareto Dominance and Crowding

112

Distance. The evolutionary operators applied in this algorithm are binary tournament

selection, uniform crossover, and mutation operators.

Following the implementation of the One-Versus-All scheme, a Partial-Class Relevant

subset is created for each class. There is also an optimal Full-Class Relevant subset that

is created, and assuming that the maximum number of features is not reached by the FCR

subset there must be a method for combining additional features from the PCR subsets. In

the current state of the algorithm only the FCR subset of features is used, thus eliminating

as many features as possible. The next step would be to employ a method of adding features

based on the number of PCRs they are in and breaking ties in a round robin fashion. The

most common method besides keeping all features is to employ an ensemble scheme where

each of the k + 1 feature subsets is employed for classifying all classes and the predictions

of all trained classifiers are then aggregated based on voting.

All three feature selection processes; Bhattacharya, Algorithm 9, and Algorithm 10

are implemented in [51].

3.3.4 Kernel Method Selection.

This section focuses on the potential for applying varying Kernel Methods into Multi-

Agent Systems as discussed in section 2.2. Using different Kernel functions as opposed to

the commonly employed “affinity functions” for MASs allows the classifier to operate in

feature space as was done in previous iterations of MFIRE [77, 185].

Kernel methods have been extensively studied in pattern recognition and machine

learning over the last decade, and they have been successfully utilized in a variety of

applications [38, 170]. A main advantage of kernel methods is that nonlinear problems

such as classification and regression can be solved using classical linear approaches. This

is essential for MFIREv3, as the five attacks and normal dataflow from our data sets are not

linearly separable as illustrated in Figure 3.14.

113

Figure 3.14: Illustration of Non-Linear Separability: Magenta-DDoS Worm- Red Scan-

Green MitM-Yellow Trojan-Blue Normal-Black(Covered); Feature 1: Number of distinct

destination addresses Feature 2: Total number of inbound bytes Feature 3: Std. Dev-Ratio

of packets to (dest addr, dest port)

Kernel machines have been shown to outperform many other techniques in regression

and classification problem, however its performance is highly dependent upon the kernel

function and hyper-parameters used [38, 170]. Unfortunately, there is no analytic method

to help the user discover the optimal kernel function or hyper-parameters. This means

that the common approach is a simple “trial-and-error” methodology that severely limits

the range of kernel functions that can be considered. Arjan Gijberts [67] presents an

automated approach for finding good kernel functions and hyperplanes using Evolutionary

computation, however this effort also uses the “trial-and-error” approach.

Previous versions of MFIRE utilized a Radial Basis Function (RBF) kernel for

classification also known as a Gaussian kernel [185]. Using a Gaussian Kernel allowed

for excellent classification accuracy. Gaussian kernels are among the most widely used and

researched kernels in the field, however they are much less computationally efficient than

114

linear or uniform kernels [153]. A selection of common Kernels employed by SVMs are

illustrated in 3.15.

Figure 3.15: Kernels in Common Coordinate System [77]

A Gaussian kernel is of far greater complexity than a linear kernel, with a complexity

of O(nd) as opposed to O(n + d). To begin the process of improving classification rates

without decreasing accuracy drastically, we aim to find a linear kernel classifier. By using

a linear classifier, parallel SVM, and fully distributed agents, the rate at which the training

and classification processes complete should greatly improve from the previous version.

This effort compares the accuracy and time of classifying attacks using both a

Gaussian and linear kernel. The linear kernel certainly provides faster classification. This

effort compares the loss in classification accuracy as compared to the Gaussian kernel.

3.3.5 Testing the MAS.

During online testing, agents are instantiated in the environment, observe and share

feature information, and provide attack classifications. The class OnlineTest is the primary

method for performing online testing of the MAS performance.

115

3.4 Movement models

The next primary element of MFIRE is the functionality which controls agent

movement. Recall that the goal of this research is to develop a Multi Agent System (MAS)

for the defense of flow based system attacks and anomaly detection and identification. The

following high-level objectives support this goal:

• Continue design and evaluate a multi-agent intrusion detection system using a

Reputation system

• Evaluate the MFIREv2 multi-agent intrusion detection system using stochastic

search

• Design and evaluate a multi-agent intrusion detection system using deterministic

search with search incentives and Maximum Cover

In this iteration of the research development, the agents use the same classifier for

both of the stated objectives. We are interested in comparing the performance of the

MAS using two different models for the way agents move in the network. The following

sections describe the reputation model and the free-movement model. These two models

are compared to a baseline model of non-moving agents (fixed model). The fixed model is

trivial, and is not described here in detail.

3.4.1 Agents using a reputation model.

The collective activity of the population of agents is tied together at the multi agent

system (MAS) level through a series of providers, which process the classification decisions

(‘votes’) of individual agents and reports the majority result amongst the rest of the

providers. The reputation framework is discussed in section 2.8 as well as alternative

methods to the reputation calculation used in MFIREv3. Previous versions of MFIRE chose

to allow a single AgentController determine movements and overall network classifications

[77, 185].

116

In MFIREv3, prior to classification agents may receive sharing assignments from

their provider, and share feature values accordingly. Each agent is then able to make a

classification based on local as well as shared feature values. This is a simple evolution

from the Reputation system utilized in the previous versions of MFIRE [77, 185] by

distributing the intelligence of one AgentController amongst multiple agents. The rational

for moving to a distributed system is discussed in the distributed agent section 2.7.

Algorithm 11 Reputation Calculation
denote classification by agent a j at time t using only local feature values as l jt

denote classification by agent a j at time t using combined local and shared feature values
(e.g. from peer agent ai) as c jt

denote the majority classification at time t as mt

Require: 0 < decay ≤ 1
procedure CalculateReputations(decay)

for all agents ai do
for all recipients a j of information provided by ai do

if c jt = mt then
if l jt = mt then

ratingi j ← neutral
else

ratingi j ← positive
end if

else
if l jt = mt then

ratingi j ← bignegative
else

ratingi j ← smallnegative
end if

end if
reputationi ← reputationi + ratingi j

end for
reputationi ← reputationi × decay

end for
end procedure

117

The provider of an agent stores the agent reputation. Each round, it calculates a rating

for each sharing assignment an agent was given. The rating depends on a heuristic measure

of how much the shared feature values helped or hurt the recipient’s ability to classify in

step with the majority. After all ratings are processed, the provider may then decay each

agent’s reputation by 10%. The idea is to motivate agents to explore other nodes when they

are not perceived as making any positive contributions to the community.

Algorithm 11 details the idea. The values for variables neutral, positive, bignegative,

and smallnegative are reflected in Table 3.2.

MFIREv3 employs a distributed reputation system per the broad categorization of

[88]. This is different from the previous generations of MFIRE which utilized a central

controller. This approach puts the reputation of each agent under the control of a specific

provider (another agent) as opposed to a central reputation manager. As discussed in

section 2.7, distributed intelligence provides many benefits in the management of complex

problems. Distributing the intelligence promotes a more thorough decomposition of

the complex problem. Fully distributed systems create complex management of agent

interactions, but is not prone to single point-of-failure issues. Both systems offer unique

benefits, and it is possible that the centralized approach is a better more sustainable

architecture, however utilizing a distributed approach allows for thorough quantitative

comparisons between the two architectures.

Agents start with a base reputation value of 0.5 ± 0.05, which is approximately twice

the migration threshold value of 0.25 used in experimentation. The Provider uses Table 3.2

to modify reputations according to how well agents’ observations helped receivers vote in

step with the majority. When an agent moves to a new node, its reputation is reset to the

base value. The small ±0.05 random offset imparts some non-deterministic movement into

the agents, and is needed to combat an observed behavior which causes agents to move

in lockstep with each other. This occurs if agents all make the same classifications period

118

Table 3.2: How the Provider Rates Shared Feature Values

Receiver’s classification result, based on feature sets used

Local Only Local + Shared Rating

Same as majority Same as majority +0

Same as majority Differed from majority -0.1

Differed from majority Same as majority +0.1

Differed from majority Differed from majority -0.05

after period, which happens when they are using a very accurate classifier that is not very

sensitive to location in the network. Moving all at once is undesirable because no attack

classification is given if all agents are in motion. Recall that agents can either be classifying

an attack or moving, not both. In addition to this random offset, we also only allow at most

50% of the agents to move at one time. This ensures that in every period there are enough

stationary agents to make a classification.

When agents vote in step with the majority, and would have done so even without

the use of the shared observations, there is no reason to rate their providers positively or

negatively. On the other hand, if the agent is prepared to vote in step with the majority,

but ends up not doing so due to the influence of the shared observations, the judgment

of the crowd is viewed as superior to the opinion of a single peer and thus the provider

rates negatively. Real benefit is perceived when they would have voted out of step with

the majority but for the “corrective help” of the shared observations, and in such cases

providers rate positively. If the agent votes out of step with the majority and would have

done so even without the shared observations, the provider rates negatively. But, not so

119

much as if the shared observations had dissuaded the agent from otherwise voting in step

with the majority.

3.4.2 Agents using a Stochastic Model.

Figure 3.16: Classification Rule

In the reputation model, agents rely on a provider to provide move or stay commands.

The Provider for an agent, which is another assigned agent, keeps track of reputation

of each agent, which is used for both sharing assignments and movement. The agents

themselves do not make any local decisions. In contrast, this model decouples agent

movement from the reputation system, and allows agents to move freely on their own.

The Providers still keep track of the reputation of each agent for feature sharing. Each

agent controls its own movement locally, via an actuator which provides a binary activate

or non-activate (boolean) decision. SOMAS [84] uses this approach and MFIREv2 [185]

implemented the free-movement model to test functionality, but did not provide thorough

120

testing of classification accuracies or efficiency. SOMAS [84] implements the actuator

shown in Figure 3.16, which takes weights from a center point to determine a binary

activation area. These weights are found using a genetic algorithm.

Figure 3.17: Movement Actuator 3-feature Color Determines Probability

This research implements a model designed by Wilson [185], and incorporates a

stochastic element to the activation decision. It is important to keep agent movement in

the network somewhat randomized, so that they do not cluster at the same node and never

explore other areas. In addition, we like for a potential actuator to be easily manipulated

with a stochastic search routine, such as genetic algorithms. The solution we propose is

a probabilistic segmented actuator, shown in Figure 3.17. This actuator takes inputs from

N features, and outputs a activation probability. Probability maps are stored directly in

the actuator, and it functions as a quick lookup table, based on the location in feature

space. To develop and train such an actuator, one must define three things: dimensionality

(number of features), number of segments, and choose which specific features are selected.

The movement actuator may use the same local and combined feature sets available to the

agents’ attack classifier. For the research, we examine a 3-feature classifier, with 16 total

121

segments. Features are selected from the optimal subset from the feature selection MOEA

described in section 3.3.3.

3.4.3 Deterministic Search with Maximum Cover.

The goal for agents moving autonomously within a network is to move to unique

locations that allow for the best classification of the type of attack to take place. If there

is one attack and only one agent, the optimum location is simply to be located on the node

being attacked in order to have the most accurate data as to the type of attack.

Real world network intrusion detection is not limited to one attack on one node. If

one attack is occurring and all of the agents are located near that attack in order to best

classify that attack, the rest of the network is open for attacks that go unnoticed. Leaving a

majority of the network vulnerable for a second or third attack in order to use all of the agent

resources to classify an initial set of attacks is not an acceptable solution to the classification

problem. Instead the agents must find optimum locations for classifying attacks while still

covering as many nodes on the network as possible.

This problem is the combination of two known Non-Polynomial (NP) Complete

problems [8]. The first of the problems is a Constraint Satisfaction Problem [8], where

given n agents and m attacks, what locations for the agents meet the constraints that every

attack must have an agent within X nodes of the attack, and no two agents can be within Y

distance of one another. The second NP Complete problem is a Maximum Cover problem

[32], where given n agents that each cover Y nodes, what locations within the graph allow

for the Maximum number of nodes to be covered while still meeting the constraints of the

first problem.

The final and most important constraint is the movement incentive. If no attacks are

detected and all n agents achieve a Maximum Cover, there is no incentive to search other

nodes unless this action receives incentives. The incentives are provided by awarding value

122

to nodes that increases every time step that an agent is not within X nodes of the valued

node.

The Objective Function of the problem is to find the least cost agent locations with

regard to distance from the locations of attacks while achieving a Maximum Cover of

unique nodes by the agents and searching through all nodes within the network.

The output domain contains the Graph G including the locations of the attacks, agents,

and current node values. Also included in the output domain are three lists containing: the

costs from each agent to each attack, the nodes covered by the agents and their respective

totals, and the value of each node at the current time step. The problem can be broken into

6 separate structures that contain all of the objective data necessary for determining the

optimum solution:

• Graph G = n1, n2, , nn Graph of nodes

• Agents A = a1, a2, , an List of agents and their locations in the graph

• Attacks T = t1, t2, , tn List: Type of attack and their predicted location in the graph

• List D = d1, d2, , dn Distance between each agent and each attack (minimize)

• List C = c1, c2, , cn Number of unique nodes covered by agents and their locations

(maximize)

• List V = v1, v2, , vn Values at nodes with agents on them at current time step

(maximize)

Agents move in order to complete three objectives. The most vital and primary

objective of each agent is to make sure a detected attack is classified by moving toward

an optimal location for classification. Reputation does not exist within this movement

model. Instead, all agents are assumed to maintain “perfect” reputations. If one agent

detects an attack, the network is classified as being attacked by that attack and agents

123

move to optimally classify that attack. If two agents detect different attacks, the agents

move to optimally classify both attacks and the network is classified as being under both

attacks. This methodology is not optimal and leads to many false positive classifications.

The objective of this model is to test the effectiveness of distributing knowledge amongst

the nodes for possible inclusion in a Reputational or other movement model.

The next objective is to achieve a Maximum Cover of the network to allow for the

greatest chance to detect a new attack early. The last objective is to search the entirety of

the network to promote detection of attacks on exterior nodes.

3.5 Defensive Measures Methodology

Section 2.9 presented a number of defensive measures to bolster an Intrusion

Detection System (IDS). Of the defensive methods presented, certain methods present

complicated ethical dilemmas while others are not suitable for an anomaly based IDS.

We selected two methods of defense for inclusion in MFIREv3: rate-limiting and node

elimination/rerouting..

Section 2.9 illustrates the effectiveness of rate limiting in real world applications. For

this research effort we qualitatively evaluate the spread of a DDoS attack with and without

rate limiting. The Pareto model of normal traffic described in Section 3.2.3 limits traffic to

a normalized rate below 0.1. The DDoS attack spreads at rates exceeding the normalized

0.1 threshold. Limiting the spread of traffic when the attack takes place reduces the ability

of the attack to spread. This is because many attack packets must drop as normal traffic

corrupts the flow of malicious packets on a chocked network. For this research experiment,

we limit the traffic to a maximum normalized value of 0.1 to prevent the spread of the

DDoS attack.

The elimination of a network node that is corrupted with a Worm attack can block the

attack in a small area of the network [39]. Incapable of infiltrating the remaining areas of

the network, a Worm attack is neutralized in the amount of time it takes to reimage the

124

compromised nodes. For this experiment, we block all traffic forwarded from one node in

the network in order to contain the attack. The network used in this experiment is specific

to testing the capabilities of containing a Worm attack and shown in Figure 3.18.

Figure 3.18: Worm Rerouting Network MFIREv3

Four agents placed at the four nodes connecting the leaves of the network to the center

of the network attempt to classify a Worm propagation. When the attack is detected, the

agent detecting the attack closes all ports on the node effectively removing the node from

the network. The Worm propagation begins at one of the four corners of the network

and aims to spread to as many nodes as possible before containment. At the end of each

simulation, the number of compromised nodes is counted (minimum of 3). If the attack

escaped the quadrant of the network it began in the defense is considered a failure. In a

larger network once a Worm takes over a central part of the network it is very difficult to

contain [39].

125

3.6 Visualization

The purpose of visualization for any exercise is to provide vivid insight into a complex

system in order to demonstrate a better understanding of the system [60]. Chapters 2 and 3

present complex attack scenarios, agent movement, and network architecture that demand

visualization in order to best comprehend and evaluate the research experiment and design.

In many cases however, overly complex and intricate visualization tools designed with

compelling animations can distract the audience from the information at hand.

The intuition behind animation is clear: if a two-dimensional image is good on

paper, then a moving animation should be better [60]. This is the case for MFIREv3

as well. Quality, detailed information about the success of failure of agent movement,

defense, and attack spread can be derived from two-dimensional images of the network.

An improvement of this process is to visualize the agent movement up to the point where

they reach optimal locations for classification.

Visualization animation helps a viewer work through the logic behind an idea by

showing the intermediate steps and transitions. It offers a fresh perspective and invites

the user to look deeper into the data presented.

The visualization of these movements does not need to be distractingly complex.

Simple designs of networks are illustrated in the MASON package and allow for the viewer

to see the necessary components of the network with ease. Agents can be represented in any

number of ways, however the intuitive design is to simply represent and agent located on a

node as a different color at that specific node location. Attacked nodes are represented in

yet another color, with the malicious traffic they create represented in a different color from

normal network traffic. An example from the MFIREv3 visualization system is illustrated

in Figure 3.19, with malicious traffic represented in a dark gray and agents in position to

classify the attack shown as dark ovals inside network nodes.

126

Figure 3.19: Illustration of MFIREv3 Visual Interface

Visualization however appears to fall short in representing complex data in the form of

scatter-plots. Two separate studies have looked at different types of animations concerning

data and found that they rarely help improve a student’s understanding of the system [60].

Instead, detailed static graphs that utilize varying color schemes and angles appear to

help understanding data most effectively. People have difficulty tracking more than four

moving points at a time, and in the case of MFIREv3, there would be six moving points for

a 3-dimensional graph in feature space.

Research shows that illustrating one concept or theory in a static graph is the best

method to convey meaning [117]. For this research, outside of the animation of agent

127

and attack movement, data must be analyzed using static graphs. Illustrations of class

separation, classification accuracy, and results of attacks does not only help convey

understanding of the success or shortcomings of the system, but also helps convey the

meaning of the algorithm and data themselves. The key is to not only provide the

histograms, scatter-plots, or graph of the network, but to also place the images in a logical

order with thorough descriptions as to tell a story that conveys the meaning in the simplest

form [117].

3.7 Summary

This chapter illustrates the design and implementation of MFIREv3, including the

MASON discrete event simulator, network features, feature selection, attack models,

defensive measures, and SVM classification. The following chapters build upon these

design implementations through experimentation and analysis of the results.

128

IV. MFIREv3 Experimentation and Analysis of Results

The previous chapter illustrates the design and implementation of MFIREv3,

including the MASON discrete event simulator, network features, feature selection,

attack models, defensive measures, and SVM classification. This chapter presents the

experimentation and analysis plan evaluating the objectives stated in Section 1.2. Section

4.1 provides insight into testing a Software System. Section 4.5 describes the experimental

design. Results and analysis are presented in section 4.6. The Defense experimental design

and analysis is presented in Section 4.7.

4.1 Software Testing

This chapter discusses the design and testing methods and techniques for the

MFIREv3 system. This section details the multiple agent testing.

Software testing is an investigation conducted to provide stakeholders with informa-

tion about the quality of the product or service under test. For this effort we test synthetic

data, which according to McGraw-Hill Dictionary of Scientific and Technical Terms in-

cludes “any production data applicable to a given situation that are not directly obtained

by direct measurement” [140]. Instead of using real world data sets of intrusions, which

contain significantly greater variation, increased attack inactivity, and lack of baseline for

any class, we create a model of the network traffic that can be tested more effectively [38].

Another issue with using real network attack traffic is that much of the useful datasets are

proprietary or classified and testing attacks on a live network creates fetching legality is-

sues. Synthetic data helps meet the needs of the investigation, by modeling real attack

traffic as microflows [30].

129

Barr et al. [18] explain the need for an experimental design that helps determine

whether a new heuristic method contributes something important. They present a list of

possibilities. A heuristic method makes a contribution if it is:

• Fast: produces high-quality solutions quicker than other approaches;

• Accurate: identifies higher-quality solutions than other approaches;

• Robust: less sensitive to differences in problem characteristics, data quality, and

tuning parameters than other approaches;

• Simple: easy to implement;

• High-impact: solves a new or important problem faster and more accurately than

other approaches;

• Generalizeable: having application to a broad range of problems;

• Innovative: new and creative in its own right.

Barr furthermore asserts [18] that research reports about heuristics are valuable if they

are:

• Revealing: offering insight into general heuristic design or the problem structure by

establishing the reasons for an algorithm’s performance and explaining its behvaior;

• Theoretical: providing theoretical insights, such as bounds on solution quality

From Section 1.2, the goal of this research is to develop a Multi Agent System (MAS)

for the defense of flow based system attacks and anomaly detection and identification. The

objectives supporting this goal are:

• Continue design and evaluate a multi-agent intrusion detection system using a

Reputation system

130

• Evaluate the MFIREv2 multi-agent intrusion detection system using stochastic

search

• Design and evaluate a multi-agent intrusion detection system using deterministic

search with search incentives and Maximum Cover

• Design and evaluate a Multi Objective Evolutionary Algorithm for best subset feature

selection

• Determine if attacks can be classified using a Linear Kernel as opposed to the Radial

Basis Function when using MOEA selected features

• Create a robust distributed simulation framework for evolving self organizing multi-

agent systems

• Create a robust simulation framework for the automated defense of the network

Therefore, the reputation, stochastic, and deterministic systems under a self-organized

and fully-distributed framework are the initial heuristics under study, while the feature

selection algorithm and defensive measures are evaluated for improvements to the overall

effectiveness of the system. Qualitatively, we can observe that these features are all

innovative and effective. Our experimentation aims to demonstrate is that the use of these

features increases the accuracy of the multi agent network attack classifier and improves its

overall ability to identify and eliminate attacks.

The order of these objectives suggests a natural chronological sequence of testing.

Feature selection testing preceded the movement model development for use in agent clas-

sification. The Reputation model developed in MFIREv1 [77] is the first model tested using

the fully distributed system. This preceded testing on MFIREv2’s Evolutionary algorithm

[185], and testing on the new Maximum Cover Deterministic Search. Implementation of

the defensive measures is the final stage of this design.

131

Software testing provides an objective, independent view of the software to display

the risks, failures, and implementation characteristics of the product. Testing insures that

the errors are eliminated or accounted for, and that in a black-box scenario the software is

capable of providing good solutions [38].

The general focus of software testing is validating and verifying that a computer

application [145]:

• meets the requirements

• works as expected

• the test can be replicated

• satisfies the needs of the user

Different software development models focus the test effort at different points in the

development process [145]. Newer development models, such as Agile [112], often employ

test-driven development and place an increased portion of the testing in the hands of the

developer, before it reaches a formal team of testers. In a more traditional model, most of

the test execution occurs after the requirements have been defined and the coding process

has been completed [135].

Testing software agents and Multi-Agent Systems (MAS) requires subtle differences

in its methodology. For instance, the autonomous behavior of the agents as well as

their distribution, social and deliberative properties, which are particular for MAS, require

evaluation separate from the performance of the classification accuracy, defensive tactics,

feature quality or any other quantitative measure [44, 65, 94, 156]. In other words, the agent

behavior requires some partially qualitative evaluation outside of quantitative measures for

the rest of the software.

Agents operate asynchronously and in parallel making testing and debugging

challenging [134]. Agents communicate primarily through message passing instead of

132

method invocation, so traditional testing approaches are not directly applicable. Agents are

autonomous and cooperate with other agents, so they may run correctly by themselves but

incorrectly as a community or vice versa. Adding to the difficulties, agents in MFIREv3 are

programmed to learn thus changing their behavior over time. This means that successive

tests with the same data may yield different (albeit improved) results [185].

Initial works on evaluating MAS quality focused on the definition of techniques

for automating the validation of MAS specifications through formal proofing or model-

checking [30, 112], and on the development of debugging tools and techniques to enhance

MAS development platforms [145].

Structured testing approaches have been proposed more recently, to complement

analysis and design methodologies [38, 68, 135, 145]. These approaches rest on the idea

that behavior of the MAS can be dynamically evaluated providing as input a set of test

cases that are derived from analysis and design artifacts.

Differently from these techniques, simulation-based approaches aim at detecting

abnormal behaviors while a simplified version of the system is executed in a virtual

environment [44, 65, 94, 156]. This is the methodology utilized in MFIREv3 testing,

because they are particularly appropriate to evaluate emerging behaviors in self-organizing

systems [47]. Data mining techniques are applied to simulation logs for the small and large

versions of the MAS by simply taking the output data. In other systems, simulation logs

are dealt with using ACLAnalyser in order to deal with scalability issues in a large MAS

[152]. This is not utilized in the current installment of MFIRE, but should be looked at for

future, larger versions of the system.

4.2 K-Fold Cross-validation

In all research it is important to validate the results of the experiment by observing the

results of the test data. Results of the training data show very little; only that the learning

machine was able to model the training data. Given that there is no baseline for comparing

133

the effectiveness of the model (outside of the static model), the performance of the system

is evaluated based on the Receiver Operating Characteristic (ROC) curve [134] and tables

illustrating the percentages of correct classifications by the machine after training to the

model. For this effort, a 5-fold Cross-validation was used over the approximately twenty-

thousand data points produced.

This means that approximately twenty-four thousand points helped in the training

process, while six thousand validated the results of the model. For validation purposes,

it is normal to choose a value of ten for K [134], however for this effort a 5-Fold validation

affords plenty of training data while allowing a larger, more exhaustive set of data points to

be used for validation.

4.3 Feature Selection

Feature selection effectiveness improves the overall quality of the agent’s classification

ability. Section 2.2.2 explains the importance of good features in classification systems,

while section 3.3.3 details our design. Testing the quality of features is completed using

static agents to provide standardized results.

The test with five attacks compares the accuracies between a random set of three

features (as conducted in MFIREv2 [185]) and the set of three features selected by the

MOEA Algorithm 10. Agents are trained using all 84 features for twenty-four thousand

samples, and validated using their respective features with six-thousand points. The

training involves using only two agents, while the validation uses four static agents located

at predetermined locations with high visibility of a majority of nodes on the network.

The Radial Basis Function (RBF) Kernel is selected for this experiment for its accurate

classification results. For each MOEA, we populate the space with 30 samples over 40

iterations.

134

Table 4.1: Feature Selection Classification Accuracies

Random MOEA

mean 0.642 0.698

median 0.639 0.690

stddev 0.032 0.040

The feature set provides a 13.1% increase in classification accuracy for static agents

over the six scenarios. These results support the design objective: Design and evaluate a

Multi Objective Evolutionary Algorithm for best subset feature selection.

We also test the classification improvement between each individual attack and the

non-attack mode. This test only uses two features, but two separate feature selection

algorithms choose “optimal” two-feature sets to compare with the random set. The first

algorithm uses the Bhattacharya coefficient to choose the “best” two-features and the

second is the MOEA; Algorithm 9. This test allows us to determine the increase in

performance if all agents are trained to detect the specific attack that takes place. Once

again, two static agents are trained using all 84 features. This time however, only eight-

thousand points are used for each test (four-thousand attack and four-thousand non-attack),

and validated using their respective features with two-thousand points.

The results illustrated in Table 4.2 show an improvement in the classification

accuracies when agents use the best features for classifying an individual attack. The

results are more accurate than the five-attack classification, because the agents only have to

distinguish between two states.

4.4 Kernel Functions

As illustrated in section 3.3.4, the data cannot be linearly separated into classes without

entering a higher dimension. To enter a higher dimensional space, we must introduce a non-

135

Table 4.2: Feature Selection Single Attack

Random BC MOEA

DDoS mean 0.802 0.858 0.859

median 0.803 0.860 0.861

stddev 0.052 0.057 0.040

Scan mean 0.772 0.778 0.828

median 0.780 0.791 0.833

stddev 0.032 0.033 0.039

Worm mean 0.782 0.824 0.869

median 0.776 0.811 0.870

stddev 0.025 0.031 0.032

MitM mean 0.696 0.737 0.748

median 0.697 0.731 0.751

stddev 0.043 0.044 0.041

Trojan mean 0.802 0.855 0.869

median 0.796 0.840 0.880

stddev 0.046 0.042 0.050

linear Kernel. Testing conducted with a linear Kernel provided inaccurate classification

results. Figure 3.8 shows the classification data for the optimal pair of features for the

Denial of Service attack. It is clear that a simple linear classifier is incapable of providing

quality separation between the attack data and the normal non-attack set.

The other attacks can be found in Appendix F, and the figures support the use of a non-

linear Kernel. Section 4.3 details the accuracy of the Gaussian Kernel with all attacks and

individual attacks. Testing using a linear Kernel took place with only individual attacks.

136

Figure 4.1: Illustration of DDoS vs Normal Features F1: Num inbound Bytes F2: Num

inbound Packets

As Figure 3.8 and the Figures in Appendix F indicate, the accuracy of the classifier was

substantially diminished using a linear Kernel.

The results of the linear Kernel classification using the same feature sets as the

Gaussian Kernel are shown in Table 4.3.

As the results illustrate, with the current datasets a non-linear Kernel is required. In

this research investigation we utilize a Gaussian Kernel, however section 3.3.4 illustrates

other options.

4.5 Movement Models Experimental Design

Three movement models are designed and tested in this research effort: Reputation,

Stochastic Evolutionary Algorithm, and Deterministic Max-Cover.

Testing the effectiveness of the MFIREv3 MAS using each model consists of training

two classifiers (local and combined) using data generated offline, and testing the MAS

online in two modes of operation. In particular, we seek to find the overall MAS

classification accuracy with a 4-agent and 8-agent model. For both models, we observe

the accuracy at the initial time in the simulation, and at the end. The change in accuracy

137

Table 4.3: Linear Kernel Accuracies

Random BC MOEA

DDoS mean 0.612 0.648 0.646

median 0.613 0.640 0.641

stddev 0.080 0.069 0.070

Scan mean 0.622 0.644 0.634

median 0.612 0.623 0.622

stddev 0.066 0.075 0.059

Worm mean 0.581 0.601 0.609

median 0.589 0.601 0.600

stddev 0.055 0.060 0.061

MitM mean 0.598 0.612 0.619

median 0.597 0.609 0.611

stddev 0.062 0.059 0.058

Trojan mean 0.571 0.600 0.608

median 0.579 0.599 0.604

stddev 0.068 0.068 0.069

during this time represents the increase in performance attained from agents finding better

vantage points in the network.

To create the training data, we run repeated simulations on a single, 100-node regional

network, where each simulation represents a single attack scenario. The attack is selected

one-at-a-time from our six defined scenarios: Normal, DDoS, Worm, Scan, Man-in-the-

Middle, and Trojan. Flow-based statistics are captured in two places in the network and

processed to create two training sample sets, local data and combined data. We then train

both classifiers with an SVM using an RBF Kernel, 5-fold cross validation, and a grid

138

search for optimal parameters C and γ. The two resulting classifier models are used for all

subsequent testing.

To limit the variance in the experiment, all six scenarios are executed 20 times, and

average accuracy recorded. We perform 30 sample observations, which yields 7200 total

simulations needed. This sample size is chosen to allow first and second order statistics to

be used to evaluate the results. More observations are preferred, and 30 is an acceptable

number to achieve a good confidence level while still running in a reasonable time [184].

Each simulation must be performed for a minimum number of necessary time steps to

ensure agents have time to move to better vantage points, and a time span of 80 time

periods is conservatively allocated.

4.5.1 MFIREv3 Reputation System Experimental Design.

The Reputation Model is thoroughly tested by both the creator Hancock [77] and

Wilson [185]. This research effort aims to improve upon the previous versions results with

feature selection and distributed control of the agents.

Experiment summary for the Reputation model:

• Six attack scenarios: Normal, DDoS, Worm, Scan, MitM, Trojan

• Each simulation: 80 time periods

• One observation: six scenarios over 20 simulations each

• Total sample size: 30 observations

• Number of agents: four or eight

4.5.2 MFIREv3 Stochastic Search Experimental Design.

The Stochastic Search, created by Timothy Wilson [185], required full experimental

testing. Wilson validated the functionality of the system in MFIREv2 [185] and this

research investigation tests the accuracy of the search using the features selected in section

139

4.3. The effectiveness of the search is compared with the other two models and the baseline

model.

The free-movement model is created by running a generational genetic algorithm on

a population of candidate solutions. Each successive generation, the individuals become

more adapted to solving the problem. We conduct the GA with the following parameters

to validate its functionality:

• Single objective: maximize overall classification accuracy

• Individual solution: real-valued agent movement actuator

• Feature selection: three features selected

• Maximum evaluations: twenty generations

The experiment summary for Stochastic Search is defined as:

• Four and eight agents in the network

• Six scenarios: Normal, DDoS, Scan, Worm. MitM, Trojan

• One observation: six scenarios over 20 simulations each

• Total sample size: 30 observations

• Improvement: difference between final and initial accuracy

• Fitness: average improvement over 2 simulations

The test parameters and experiment are not meant as a complete method to find a near-

optimal movement actuator, but provide a detailed analysis of the current effectiveness

of the design. With a stochastic search genetic algorithm, infinite variations of decision

parameters provide varying degrees of effectiveness in any system. Areas of optimization

in the stochastic search model include:

140

• Fitness function

• Polynomial mutation

• Simulated Binary Crossover (SBX)

• Binary tournament selection

• Parent-child replacement

• Convert actuator to chromosome

• Convert chromosome to actuator

• Save actuator model

• Read actuator model

• Agent behavior

The stochastic search model provides an alternative movement model for the agents

with different areas of optimization from the other two models. All three models can be

optimized independently or specific benefits of one model can be brought into the other

models.

4.5.3 MFIREv3 Deterministic Maximum Cover Algorithm Experimental Design.

This final movement model is a Deterministic Maximum Cover model, using a Multi-

Objective Evolutionary algorithm. The purpose of exploring this avenue in agent location

optimization is determining the validity of distributing knowledge of node quality among

the nodes in the network. The deterministic model is created by running an optimization

algorithm on the agents. Each successive generation, the individuals choose to search new

locations, while maintaining a “good” cover of nodes. We conduct the algorithm with the

following parameters to validate its functionality:

141

• objectives: maximize classification accuracy, coverage of network, exploration of

network

• Individual solution: choose best valued location based on rewards of cover or new

node

• Feature selection: three optimal features selected

The experiment of the Deterministic Search is defined as:

• Four and eight agents in the network

• Six scenarios: Normal, DDoS, Scan, Worm. MitM, Trojan

• Simulated for twenty observation periods

• Improvement: difference between final accuracy and initial accuracy

• Fitness: average improvement over 2 simulations

Once again, the test parameters and experiment are not meant as a complete method

to find a near-optimal model, but rather as a method for validating the core functionality of

the deterministic model. The key component of the model is the retention of information

about specific nodes. This feature can be applied directly to the other movement models

in any number of key areas. In this instance, the nodes retain the time between their last

observation. As addressed by David Hancock [77], if nodes retain the information that a

node is not beneficial for classification (does not provide a good reputation), agents would

be able to avoid moving to that location as frequently. Specific areas of optimization in the

deterministic search model include:

• Fitness function

• Classification accuracy

142

• Max Cover Reached

• Nodes searched

• Agent behavior

The final results of the Reputation model, free-movement model, and the maximum

cover model are presented in the next section.

4.6 Movement Model Analysis

The next three sections provide the detailed results for the experiments defined in

Section 4.5.

4.6.1 MFIREv3 Reputation System Performance Assessment.

The MFIREv3 reputation system is tested with the plan described in Section 4.5.1.

Figure 4.2 shows the number of agents that move in each time period. As agents

develop better reputations with time, the number of agents moving each time period begins

to settle at 2 agents. This is because the reputations of the agents approach optimal locations

for classification, and only a small number of the agents need to seek better vantage points.

Figure 4.2: Average Agents Moving (8-agent Reputation Model)

143

Figures 4.3 and 4.4 illustrate the average accuracy and false positive rate for the MAS

at every time period, for the 4-agent and 8-agent models. Each data point is the average of

120 simulations: 20 for each of the six scenarios.

The data shows that the false positive rate remains relatively steady throughout the

simulation, however there are drastic increases in the accuracies as the agents locate

improved vantage points.

Figure 4.3: 4 Agent Reputation Model: Accuracy & False Positives vs. time

144

Figure 4.4: 8 Agent Reputation Model: Accuracy & False Positives vs. time

145

We now evaluate the relative performance of Reputation system when using 4 or 8

agents in the network. When making a classification, the result can be correct, a false

positive, or a false negative (see Section 2.3). Accuracy = numbercorrect
total . Accuracy data for

all 30 sample observations is provided in Table 4.4. The columns show results for each of

the two experiments: 4-agent and 8-agent, and provides both the initial and final accuracy.

Table 4.4: Reputation System Overall Accuracy

Initial: 4-

agent

Initial: 8-

agent

Final: 4-

agent

Final: 8-

agent

mean 0.703 0.698 0.891 0.940

median 0.721 0.720 0.890 0.956

stddev 0.038 0.043 0.032 0.023

Figure 4.5: Accuracy box plots

146

To compare any two of the models we use Wilcoxon Rank Sum (Mann-Whitney) test

[128], which is a non-parametric statistical hypothesis test for assessing whether one of two

samples of independent observations tends to have larger values than the other. It remains

the logical choice when the data are ordinal but not interval scaled, so that the spacing

between adjacent values cannot be assumed to be constant. The Mann-Whitney test is

more robust than the Student t-test, as it is less likely to spuriously indicate significance

because of the presence of outliers [128]. We use the MATLAB ranksum function [77] to

compare of all six possible combinations of the three models under test. A p-value of less

than 0.05 indicates a significant difference between the two models under comparison, with

99% confidence. A p-value of larger than 0.05 indicates there is not sufficient evidence that

the two models perform differently.

Table 4.5: Wilcoxon Rank Sum p-values

p-value

Initial:4-agent vs. Final:4-agent 2.5 × 10−22

Initial:8-agent vs. Final:8-agent 1.7 × 10−30

Initial:4-agent vs. Initial:8-agent 4.9 × 10−4

Final:4-agent vs. Final:8-agent 2.3 × 10−9

The p-values between all of the models listed in 4.5 illustrate that there is significant

evidence that a difference exists between the models in each category. The most important

significance is the evidence that the agents improve with time in classifying attacks as time

continues and the agents reach improved vantage points.

4.6.2 MFIREv3 Stochastic Search Performance Assessment.

Timothy Wilson created and successfully validated the use of a stochastic search

algorithm for the MFIRE system [185]. Testing the accuracy of the system in accordance

147

with section 4.5.2 and the use of the “optimal” feature subset for classification allows us to

compare the effectiveness of the stochastic search with the other movement models.

Figure 4.6 shows the number of agents that move in each time period. Agent

movement is locally decided based on probabilities within the movement actuator. The

movement actuator does not stabilize as the Reputation model does with time and agents

locating good observation points. Instead, as the probabilities to move remain constant, the

number of agents moving each timestep never remains sporadic.

Figure 4.6: Average Agents Moving (8-agent Stochastic Model)

Figures 4.7 and 4.8 illustrate the average accuracy and false positive rate for the

stochastic search model at every time period, for the 4-agent and 8-agent models. Once

again, each data point is the average of 120 simulations: 20 for each of the six scenarios.

148

The number of false positive classifications continues to remain low, while the

classification accuracy increases from the initial values. Neither the 4-agent nor 8-agent

models perform as well as the Reputation model in terms of classification accuracy.

Furthermore, consistent improvement as time continues does not occur with the stochastic

model. Instead the classification accuracies remain sporadic and hover around the 80% and

83% marks for the 4-agent and 8-agent models respectively. The simulations also indicate

a broad variance between classification accuracies, with classifications as good as 92% and

as low as 70% after the initial results.

Figure 4.7: 4 Agent Stochastic Model: Accuracy & False Positives vs. time

We now evaluate the relative performance of Stochastic search model when using 4 or

8 agents in the network. Accuracy data for all 30 sample observations is provided in Table

149

Figure 4.8: 8 Agent Stochastic Model: Accuracy & False Positives vs. time

4.6. The columns show results for each of the two experiments: 4-agent and 8-agent, and

provides both the initial and final accuracy.

Table 4.6: Stochastic Search Overall Accuracy

Initial: 4-

agent

Initial: 8-

agent

Final: 4-

agent

Final: 8-

agent

mean 0.651 0.708 0.800 0.859

median 0.639 0.711 0.803 0.861

stddev 0.071 0.077 0.062 0.048

The Reputation model outperforms the Stochastic search in classification accuracy.

The the Stochastic movement is capable of further optimization that may improve locating

150

better nodes for classifying attacks. Furthermore, the Stochastic model places all decisions

locally on the agents. Agents act completely independent of one another in terms of voting

and movement, yet self-organize to avoid coexisting on the same node. The greatest benefit

of the model is that agents can be removed or added to the system without affecting the

abilities of the other agents to function.

4.6.3 MFIREv3 Deterministic Algorithm Performance Assessment.

The Deterministic Search with Maximum Cover is a new movement model designed to

test the effectiveness of distributing knowledge amongst nodes. Testing the accuracy of the

system in accordance with section 3.4.3 us to compare the effectiveness of the deterministic

model with the other movement models.

Figure 4.9 shows the number of agents that move in each time period. Agent

movement is locally decided based on greedily achieving the greatest “gain” determined

by an agents location with respect to nodes covered, distance from perceived threat, and

amount of time the node remained unevaluated. The movement of agents stabilizes at

around two almost immediately. This is due to the agent’s desire to visualize the maximum

number of nodes possible. Agents only seek new locations when the gain of seeking an

un-searched node surpasses the gain of the maximum cover, or an agent detects an attack.

The number of false positive classifications increased dramatically for the determin-

istic model. The false positive classification averages 14% and 18% for the 4-agent and

8-agent models respectively, since only one agent is required to classify the network as

under attack. Although the false positive rate is relatively high, the accuracy of the at-

tacks classified remained good throughout the experiment. Table 4.7 provides the overall

classification accuracies for both models.

The accuracy of the classifier is misleading, as far more normal scenarios are classified

as attacks. However, when an attack takes place it is quickly classified as only one agent

needs to recognize the attack.

151

Figure 4.9: Average Agents Moving (8-agent Deterministic Model)

Table 4.7: Deterministic Search Overall Accuracy

Initial: 4-

agent

Final: 4-

agent

Initial: 8-

agent

Final: 8-

agent

mean 0.744 0.821 0.889 0.912

median 0.751 0.833 0.878 0.922

stddev 0.032 0.036 0.041 0.049

The classification accuracies are good when the network is under attack, since only

one agent needs to recognize the attack. Furthermore, the agents tend to monitor the

network nodes with the most connections to visualize the entirety of the network. These

results provide an alternative method for classifying network intrusions that could augment

common Intrusion Detection approaches.

152

The movement of the agents within the network creates large data problems. With

each node requiring an update each timestep as to what value it is since its last observation,

validating the agent classifications takes a large amount of time. The calculations on the

100-node simulated network severely inhibited the performance of the agents with respect

to time required.

The agents stay near the most actively connected nodes within the network each

timestep, and as previously stated achieve good classification results. Making the agents

motionless and placing them directly on the most connected nodes would create the same

effect without creating an artifact of information on nodes visited.

The lack of an effective voting scheme lead to the high false-positive rate, however

this voting system is required when the agent objective is to spread away from other agents

in order to visualize the greatest number of uniques nodes. Testing effectively illustrated

that quality classifications occur when agents maintain a broad view of the network,

however node knowledge requires more computational complexity than desired for an

effective MAS. The use of stationary agents located at highly connected nodes provides

more research opportunities than the use of distributed knowledge at nodes. Stationary and

mobile agents in cooperation with one another could utilize a variation of the Reputation

model’s voting system to improve network classification.

This concludes the testing and validation of the three MFIREv3 classification models.

4.7 Defense Analysis

The automated defenses of the agents in the MFIREv3 system is not meant to stop

all attacks or even all instances of one attack. Attacking and defending networks is a

probabilistic balance. As discussed in sections 2.9 and 3.5; the aim of network defense

is to decrease the probabilities that: an attacker desires attacking the network, and that

an attack on the network is successful. No defensive system is immune to every attacks,

however bolstering the defenses increases the probability that the network remains safe.

153

Rate limiting greatly reduced the effective spread of the DDoS attack in the MFIREv3

system. Qualitatively validating the effectiveness of the rate limiting defensive measure

illustrates that it is effective in preventing the DDoS attack from overflowing its target

node.

In the 30 observations taken of the DDoS attack with rate limiting on the network,

each consisting of 20 simulations, the attack failed to reach the target node 97% of the time.

In the instance where the attack was successful in reaching the target node, the attackers

were located within a very short distance of the target node, making flooding the target

significantly easier. This result qualitatively validates that rate-limiting is an effective tool

in defense against DDoS attacks. Figure 4.10 illustrates how rate limiting greatly reduces

the spread of the DDoS attack within the MFIREv3 framework.

Figure 4.10: Figures A: Illustrating the effective spread of a DDoS attack without Rate

Limiting and B: Illustrating Rate Limiting’s effectiveness against DDoS attacks

154

The elimination of ports on network nodes in the presence of a Worm attack greatly

improves the ability to protect vital resources in the network [127]. The objective of Worm

containment defense is to qualitatively validate the ability to contain Worm Propagations

by blocking all network traffic through nodes connecting infected areas to the rest of the

network.

Section 3.5 illustrated the simple network used to validate the defensive system. At a

minimum the Worm attack compromises three nodes due to the structure of the network’s

interconnected areas. If the attack expands beyond the initial quadrant it attacked, the

defensive system fails the observation.

With 30 observations consisting of 20 simulations, we test the elimination of node

ports by attacking one of four locations with a Worm propagation. The agents prevented

the spread of the Worm propagation in 28 of the 30 observations. The success of the system

is qualitatively validated on the test network. The defensive system can be implemented on

more complex networks with larger numbers of nodes to determine its utility in structures

without clear areas to contain an attack.

4.8 Summary

This chapter details the experimental results of our research effort. The chapter begins

with a discussion of proper software testing and validation of results. Feature selection

testing and analysis follows in Section 4.3. All three movement model experimental

designs and analysis occur before the discussion of Defensive methods design and analysis

concludes the chapter.

155

V. MFIREv3 Conclusions and Future Research

This chapter highlights the successes and opportunities resulting from MFIREv3

concerning the continuing development of a multi agent system for flow-based intrusion

detection and cyber security. Section 5.1 discusses the observations of meeting the

objectives proposed in Section 1.2. Section 5.2 highlights opportunities for future research

activity. Potential Real World applications of the MFIREv3 system are presented in 5.3.

Finally an overall research summary is presented.

5.1 Conclusions

The critical need for research investigations into distributed, flow-based intrusion

detection systems is stated in Chapter 1. As noted by Sperotto et al. [163], “distributed

detection is particularly important, because the amount of traffic on high-speed networks

is still increasing, suggesting that scalability remains an issue in the future.” Furthermore,

the ability to defend these attacks is of increasing importance, as the risk-reward scenario

favors attacking valuable assets at this point in time.

The goal of this research is to develop a scalable distributed Multi Agent System

(MAS) for the defense of flow based system attacks and anomaly detection and

identification. The following high-level objectives from Chapter 1.2 support this cyber

security goal:

1. Continue design and evaluate a multi-agent intrusion detection system using a

Reputation system

2. Evaluate the MFIREv2 multi-agent intrusion detection system using stochastic

search

3. Design and evaluate a multi-agent intrusion detection system using deterministic

search with search incentives and Maximum Cover

156

4. Design and evaluate a Multi Objective Evolutionary Algorithm for best subset feature

selection

5. Determine if attacks can be classified using a Linear Kernel as opposed to the Radial

Basis Function when using MOEA selected features

6. Create a robust distributed simulation framework for evolving self organizing multi-

agent systems

7. Create a robust simulation framework for the automated defense of the network

We are successful in achieving all of the listed objectives. Our successful research

effort develops a unique multi agent system designed to engage in flow-based intrusion

detection in a distributed fashion. The achievement of the listed measurable objectives

illustrates completion of our research goal.

The fully distributed system eliminates the single point of failure that existed with the

centralized controller. This functionality was validated through the elimination of a single

agent during a test, but extensive experimentation on the accuracy of the system was not

conducted. Testing of systems with changing numbers of agents was conducted by Eric

Holloway with SOMAS [84].

Objective 1 is achieved by the experimental design described in Section 4.5.1 and the

analysis of the results in Section 4.6.1. The results illustrate not only the completion of the

objective, but also that of the current MFIREv3 Reputation model achieves a 94% average

classification accuracy using 8-agents.

Objective 2 is met by the experimental design described in Section 4.5.2 and the

analysis of the results in Section 4.6.2. The completion of the evaluation of a Stochastic

Search technique shows that the use of genetic algorithms to influence movement actuators

provides a viable solution to a fully distributed MAS. Although the model is not optimized

for comparable results to the Reputation model at the current time, it presents a faster

157

approach that with further research could rival the Reputation model in finding good agent

locations for attack classification.

Objective 3 is achieved by the experimental design described in Section 4.5.3 and

the analysis of the results in Section 4.6.3. The deterministic search model provides an

additional avenue of research. The model provides good vantage points for a large portion

of the network when the agents approach Maximum Cover nodes. In the large and complex

environment of a network, node reputation presents big data issues. The use of a similar

model in a larger network requires network specific agent locations over smaller areas.

Another option is the use of stationary agents located at predetermined Maximum Cover

locations working in conjunction with moving agents. Stationary agents achieve the birds-

eye view of the network missing from the movement models that aim to move all agents

towards attacks, without the big data.

The increase in classification accuracy over the previous effort, MFIREv2 [185], is

directly attributable to the use of feature selection. In both the baseline and Reputation

model, classification accuracies surpassed the previous effort. Section 4.3 indicates that the

MOEA for feature selection designed in Section 3.3.3 provided a good set of features to

improve the classification accuracy of the system. These results indicate the completion of

Objective 4.

Objective 5 aims to improve the efficiency of classification using a Linear Kernel to

classify network attacks. Using the features selected by the MOEA, Section 4.4 tested the

accuracy in classifying individual attacks. The results supported the use of a Radial Basis

Function, as the data is not linearly separable until it is mapped to a higher dimensional

space. Appendix F contains the rest of the graphical results of all of the Linear Kernel Tests

mot included in Section 4.4. The testing provided deeper knowledge into the clustering of

our datasets.

158

Self-organization is the ability of a system to adapt in pursuit of better performance.

The multi agent system reconfigures itself (in terms of spatial distribution of the agents)

through the use of reputation, stochastic free-movement, and Multi-Objective search. This

testing, discussed in Section 4.1, validated the completion of Objective 6. This is because

the performance gains in certain conditions are attributable to the use of these models, the

multi agent systems exhibit evidence of self-organization.

Section 4.7 illustrates the testing and analysis of network defenses against simulated

attacks. The results of the defense methods of the agents indicate that agents are capable

of containing and slowing attacks autonomously in a flow based simulation. The ability for

a mobile agent to recognize an attack and attempt to prevent the spread of and shutdown

the attack is important. The ability to contain an attack protects network resources and

has the potential to allow the user to detect the origin of the attack. The possibility

of potential criminal prosecution provides an additional psychological deterrence for the

system defenses. The results of Section 4.7 indicate the completion of our final objective.

With the completion of these objectives, we achieve the goal of developing a

distributed MAS for the defense of flow based system attacks and anomaly detection and

identification.

5.2 Future Research Activity

The most immediate need for future research is a total, comprehensive performance

evaluation of MFIREv3. Factorial design can investigate the effects of various factors

individually and jointly for increased understanding of how to set system parameters for

effective performance. The objective is to determine the effectiveness of the support vector

machine for classification in this domain.

One of the products that evolved out of our research is a set of network simulation

model refinements and extensions that, if pursued, may increase the range and depth of

MFIREv3 impact. These include:

159

• Agents with adaptability to set different feature subsets for classifying attacks based

on previous network observation

• The voting system could be changed to a probabilistic model as opposed to the

current one-vote/best-guess system.

• Adaptive numbers of agents as illustrated in SOMAS [84].

Finally, a very good area of future research is the use of both mobile and stationary

agents on the same network. The Max Cover Algorithm illustrated that a single agent

can make a good classification solely from a network hub. The distribution of knowledge

is more effective if certain agents monitor the major traffic areas while others seek to

optimally classify attacks at specific locations. The reputation/voting model could be

completely modified to include combinations of what a local agent sees with respect to

what its closest stationary agents sees. This model would effectively use a variation of the

Reputation model’s voting system, with stationary agents as well as mobile agents.

MFIREv3 developed from an object oriented framework, making these improvements

readily incorporable. It can be expanded or focused as needed to run countless conceivable

experiments with Multi-Agent systems, Intrusion Detection, and network or attack

simulation.

5.3 Applications in Real-Word Settings

MFIREv3 presents supplementary methods to bolster any network’s cyber security

systems. Signature-based intrusion detection system libraries allow for rapid classification

of known network attacks, however when these systems fail an anomaly-based detection

system may still be capable of detecting the attack.

Failures arise with signature-based IDSs when new attack implementations exploit

a previously unknown vulnerability, known as a zero-day attack [129]. Attacks such as

StuxNet and Flame bypassed common IDSs with ease [7]. Although the MFIREv3 system

160

is not deployed on active networks, and StuxNet and Flame present advanced capabilities

that do not compare with standard attacks, it is possible that StuxNet and Flame create

anomalous flows detectable by a system such as MFIREv3.

MFIREv3’s application to real-world intrusion detection is that it does not require an

updated library of known attack signatures. If a zero-day worm creates a flow that the

system can recognize, then the anomaly-based IDS detects it and thwarts an otherwise

successful intrusion.

5.4 Overall Summary

This chapter began with a review of the research goals and objectives and their

completion. Following, we provided a path for research into future iterations of MFIREv3

and multi agent, flow-based intrusion detection systems.

This research effort showed that given the objectives listed in Section 1.2, the

effectiveness of the intrusion detection and classification system is improved. This is an

important contribution that supports our goal of developing an effective, flow-based, multi

agent system for inter-AS network attack classification.

The field of cyber security research for distributed, flow-based intrusion detection

continues to be wide open for exploration. In the fight to protect the inestimable advantages

of our networks of autonomous systems, whether for civilian applications or in support of

operations conducted by the United States military with which we are affiliated, one cannot

afford to overlook multi-agent, flow-based intrusion detection techniques. It is our hope that

MFIREv3 can serve as an inspiration for parallel efforts, with the possibility of creating an

effective and scalable complement to a suite of cyber network defense capabilities.

161

Appendix A: History

This appendix details the development of the MFIRE Simulator from its beginnings

to its current version: MFIREv3.0

A.1 SOMAS

Self Organized Multi Agent Swarms (SOMAS) was created by Eric Holloway to study

the effects of a dynamic, decentralized intrusion defense system [84]. The multi agent

system is formally modeled as a DEC-POMDP, a I-POMDP, and a new F(*-POMDP).

Agents in the network are evolved using a multi-objective genetic algorithm. These agents

have the ability to change location, instantiate other agents and delete agents, as well as

various methods to modify GA chromosomes and fitness values. Also, enemy agents have

additional methods of stealing or corrupting data on a node, sending denial-of-service

packets, compromising a node, and others. These functions are activated by actuators,

which get their input from rules and sensors. The relationship between the sensors, rules

and actuators are optimized by the GA, which allows agents to defend against threats

in the network. The agents learn to defend against attacks in a number of pre-defined

scenarios, including: Intrusion Elimination, Enemy Avoidance, DDoS, and Information

War. The primary goal of SOMAS is to evaluate the effectiveness of self-organization

and “entangled hierarchies” for accomplishing scenario objectives. One of the interesting

features of SOMAS is the ability for agents to take active defensive action in the network,

rather than simply passively detecting an attack. For a complete description of SOMAS,

see [84].

A.2 MFIRE v1.0

MFIRE 1.0 was created by Capt David Hancock as a network simulation environment

to conduct flow-based intrusion detection experiments using a reputation-based multiagent

162

system [75–77]. One critique of SOMAS was its rudimentary implementation of network

topology and routing. MFIRE 1.0 was an attempt to create a more realistic simulation

environment. MFIRE 1.0 is written in Java, and makes use of the MASON DES, and

TopGen network topology generator. Networks and gateway routers are simulated down to

the Autonomous System level, and packet routing is a faithful implementation of the Border

Gateway Protocol. Delays and packet loss are handled by the system to a reasonable level

of realism, while still allowing the DES to simulate a large network at a fast rate. In addition

to the network components (nodes, links and packets), the prominent high-level objects are

processes, observations and classifiers. A process object allows arbitrary code to run on

any node. Subclasses derived from processes are made into agents, attackers, background

internet traffic, etc. In addition, each node collects flow-based observations based on the

current and past network traffic. Agents create features from these observations, which

are used to classify if an attack is occurring. Agents may use any user-defined classifier.

Finally a Reputation system for the MAS allows the providers to rate the reliability of

each agent’s classifications. This system prompts the agents to move to better vantage

points within the network, and imparts self-organization to the MAS. Special attention is

paid to the design of the MAS communication, which allows inter-agent communication

in the presence of many types of faults (see Appendix A). The provided hierarchical class

structure allows the framework to be extended for many different experiment types, using

an object-oriented approach.

Capt Hancock [77] presents the hypothesis that a flow-based, multi-agent network

attack classifier can be made more effective by:

1. employing a reputation system to govern agent mobility

2. adding a decay factor to each agent’s reputation to further spur agents to find nodes

providing the most “useful” information

From this hypothesis, four objectives are defined:

163

1. Develop an effective network simulation environment appropriate for the problem

scope.

2. Validate the proper functioning of simulated malicious traffic.

3. Validate the proper command, control, and communications in the multi agent

intrusion detection system.

4. Study the effects of several factors on classification accuracy.

The first three objectives are qualitatively validated with MFIRE 1.0.

A.3 MFIRE v2.0

Captain Timothy Wilson continued the research hypothesis of Hancock in MFIREv2

[185]. The main focus was to study the effects of several factors on classification accuracy.

Wilson conducted this testing by applying different numbers of agents to the system.

Wilson introduced a free-movement model, that eliminated the need of a central

reputation controller. This system did not undergo accuracy analysis, but provided a new

system for classification testing. For a complete description of MFIREv2, see [185].

164

Appendix B: Network Threats

Within these categories, many types of intrusion are recognized and five of them are

evaluated in this research [126]:

Information Gathering—Network devices can be discovered and profiled in much the

same way as other types of systems. Attackers usually start with port scanning. After they

identify open ports, they use banner grabbing and enumeration to detect device types and

to determine operating system and application versions. Armed with this information, an

attacker can attack known vulnerabilities that may not be updated with security patches.

Sniffing—Sniffing or eavesdropping is the act of monitoring traffic on the network for

data such as plaintext passwords or configuration information. With a simple packet sniffer,

an attacker can easily read all plaintext traffic. Also, attackers can crack packets encrypted

by lightweight hashing algorithms.

Spoofing—Spoofing is a means to hide one’s true identity on the network. To create

a spoofed identity, an attacker uses a fake source address that does not represent the actual

address of the packet. Spoofing may be used to hide the original source of an attack or to

work around network access control lists (ACLs) that are in place to limit host access based

on source address rules.

Session Hijacking—Also known as man-in-the-middle (MitM) attacks, session

hijacking deceives a server or a client into accepting the upstream host as the actual

legitimate host. Instead the upstream host is an attacker’s host that is manipulating the

network so the attacker’s host appears to be the desired destination.

Denial of Service—Denial of service denies legitimate users access to a server or

services. The SYN flood attack is a common example of a network level denial of service

attack. It is easy to launch and difficult to track. The aim of the attack is to send more

requests to a server than it can handle. The attack exploits a potential vulnerability in the

165

TCP/IP connection establishment mechanism and floods the server’s pending connection

queue.

Viruses, Trojan Horses, and Worms—A virus is a program that is designed to perform

malicious acts and cause disruption to the operating system or applications. A Trojan horse

resembles a virus except that the malicious code is contained inside what appears to be a

harmless data file or executable program. A worm is similar to a Trojan horse except that

it self-replicates from one server to another. Worms are difficult to detect because they do

not regularly create files that can be seen. They are often noticed only when they begin

to consume system resources because the system slows down or the execution of other

programs halt. The Code Red Worm is one of the most notorious to afflict IIS; it relied upon

a buffer overflow vulnerability in a particular ISAPI filter. The success of these attacks on

any system is possible through many vulnerabilities such as weak defaults, software bugs,

user error, and inherent vulnerabilities in Internet protocols.

Footprinting—Examples of footprinting are port scans, ping sweeps, and NetBIOS

enumeration that can be used by attackers to glean valuable system-level information to

help prepare for more significant attacks. The type of information potentially revealed by

footprinting includes account details, operating system and other software versions, server

names, and database schema details.

Password Cracking—If the attacker cannot establish an anonymous connection with

the server, he or she will try to establish an authenticated connection. For this, the attacker

must know a valid username and password combination. Unchanged default account

names, and the use of blank or weak passwords makes the attacker’s job even easier.

Arbitrary Code Execution—If an attacker can execute malicious code on the server,

the attacker can either compromise server resources or mount further attacks against

downstream systems. The risks posed by arbitrary code execution increase if the server

process under which the attacker’s code runs is over-privileged. Common vulnerabilities

166

include weak IIS configuration and unpatched servers that allow path traversal and buffer

overflow attacks, both of which can lead to arbitrary code execution.

Unauthorized Access—Inadequate access controls could allow an unauthorized user

to access restricted information or perform restricted operations. Common vulnerabilities

include weak IIS Web access controls, including Web permissions and weak NTFS

permissions.

Hansman and Hunt [78] provide a short taxonomy of network and computer attacks

listed in Figure B.1.

Figure B.1: Short Taxonomy of Attacks [78]

Once again, this is not a plethoric list of possible attacks, but does list the common

categories of attacks on networks. The attacks examined in this research effort include:

Denial of Service, Worm, Scan, Trojan, and Man-in-the Middle. These represent a list

167

of attacks that create flow-based anomalies in the network in both a local and distributed

fashion.

For an exhaustive taxonomy of network threats, see Lough’s dissertation on a

taxonomy of computer attacks [114]

168

Appendix C: Popular DES Engines

Some of the more well-known DES options and their areas of emphasis are:

• OMNeT++, [174]: network simulation

• MASON, [115]: agent-based systems simulation

• CNET, [122, 123]: network simulation

• GloMoSim, [191]: large-scale wireless networks

• OPNET : network simulation

• NS2, [121]: network simulation

• PARSEC, [12]: parallelization

• SystemC : electronics systems-level modeling

• Tortuga : general DES with Java/Eclipse integration

• SimPy: general DES for Python

169

Appendix D: Popular SVM Packages

A subset of popular SVM packages [89]:

• SVMlight [91]: SVMlight, by Joachims, is one of the most widely used SVM

classification and regression packages. It has a fast optimization algorithm, can

be applied to very large datasets, and has a very efficient implementation of the

leave-one-out cross-validation. Distributed as C++ source and binaries for Linux,

Windows, Cygwin, and Solaris. Kernels: polynomial, radial basis function, and

neural (tanh).

• LibSVM [36]: LibSVM (Library for Support Vector Machines), is developed by

Chang and Lin and contains C-classification, v-classification, and ε-regression.

Developed in C++ and Java, it supports also multi-class classification, weighted

SVM for unbalanced data, cross-validation and automatic model selection. It has

interfaces for Java, Python, R, Splus, MATLAB, Perl, Ruby, and LabVIEW. Kernels:

linear, polynomial, radial basis function, and neural (tanh).

• SVMTorch: SVMTorch, by Collobert and Bengio, is part of the Torch machine

learning library and implements SVM classification and regression. Distributed as

C++ source code or binaries for Linux and Solaris.

• Weka: Weka is a collection of machine learning algorithms for data mining tasks.

The algorithms can either be applied directly to a dataset or called from a Java code.

Contains an SVM implementation.

• SVM in R: This SVM implementation in R (http://www.r-project.org/) contains

C-classification, n-classification, e-regression, and n-regression. Kernels: linear,

polynomial, radial basis, neural (tanh).

170

• MATLAB SVM Toolbox: This SVM MATLAB toolbox, by Gunn, implements SVM

classification and regression with various kernels: linear, polynomial, Gaussian radial

basis function, exponential radial basis function, neural (tanh), Fourier series, spline,

and B spline.

• TinySVM: TinySVM is a C++ implementation of C-classification and C-regression

which uses sparse vector representation and can handle several ten-thousands of

training examples, and hundred-thousands of feature dimensions. Distributed as

binary/source for Linux and binary for Windows.

• Spider: Spider is an object orientated environment for machine learning in

MATLAB, for unsupervised, supervised or semi-supervised machine learning

problems, and includes training, testing, model selection, cross-validation, and

statistical tests. Implements SVM multi-class classification and regression.

• jlibsvm [160]: Heavily refactored Java port of LibSVM. Implements optimized ker-

nel functions using Java class structure and APIs, and has support for multithreaded

training.

171

Appendix E: Intrusion Detection System Details

Concepts of classifying intrusions require terminology and metrics. For ease of

readership this list provides many of the terms used in quantitatively evaluating the quality

of the MFIRE system.

Some terminology and important concepts for IDSs are as follows [182]:

• Alert/Alarm: A signal suggesting that a system has been or is being attacked.

• True Positive: A legitimate attack which triggers an IDS to produce an alarm.

• False Positive: An event signaling an IDS to produce an alarm when no attack has

taken place.

• False Negative: A failure of an IDS to detect an actual attack.

• True Negative: When no attack has taken place and no alarm is raised.

• Noise: Data or interference that can trigger a false positive.

• Site policy: Guidelines within an organization that control the rules and configura-

tions of an IDS.

• Site policy awareness: An IDS’s ability to dynamically change its rules and

configurations in response to changing environmental activity.

• Confidence value: A value an organization places on an IDS based on past

performance and analysis to help determine its ability to effectively identify an attack.

• Alarm filtering: The process of categorizing attack alerts produced from an IDS in

order to distinguish false positives from actual attacks.

172

• Attacker or Intruder: An entity who tries to find a way to gain unauthorized access

to information, inflict harm or engage in other malicious activities.

• Masquerader: A user who does not have the authority to a system, but tries to access

the information as an authorized user. They are generally outside users.

• Misfeasor: They are commonly internals who misuse their powers

• Clandestine user: A user who acts as a supervisor and tries to use his privileges so

as to avoid being captured.

173

Appendix F: Kernel Tests

This section provides the data of the five attack scenarios using the “optimal” features

to create separability from normal attack traffic. The results visually illustrate the attacks

non-linear separability. This test illustrates the need for a higher dimensional support vector

machine kernel function. For this effort we utilize a Gaussian Kernel.

Figure F.1: Illustration of DDoS vs Normal Features F1: Num inbound Bytes F2: Num

inbound Packets

174

Figure F.2: Illustration of Scan vs Normal Features F1: Num distinct dest addrs F2: Num

distinct dest ports

Figure F.3: Illustration of Worm vs Normal Features F1: Ratio of packets to dest tuples F2:

Ratio of packets from source tuples

175

Figure F.4: Illustration of MitM vs Normal Features F1: Local Num inbound Bytes F2:

Ratio of source ports to addr

Figure F.5: Illustration of Trojan vs Normal Features F1: Num distinct source ports F2:

Num inbound packets

176

Appendix G: MFIRE System Details

This appendix provides some additional MFIRE details. In section G.1, the messages

used by MFIRE are detailed. Section G.2 lists the fourteen observations collected by

MFIRE agents for use in derived features.

G.1 MFIRE: Messages

The figures provided in this section show the messages used in MFIRE. In each figure,

the left side is used for the sender. The type of the message is displayed first, and below it,

the format. The format is essential for extracting message components from the packet’s

payload, which itself is a single string. On the right side of each figure, we show the actions

that are taken by the recipient.

Figure G.1 shows the messages sent from the controller and received by agents.

Figure G.2 shows the messages sent from agents and received by the controller.

Figure G.3 shows the SHARE message used for feature value exchange between

agents.

Figure G.4 shows the messages involved in agent migration. MIGRATE is sent by an

agent that received MOVE from the controller previously. It is sent to the AgentManager at

the migration destination node. The MIGRATE message contains all information required

to reinstantiate the agent at the distant end. MIGRATEACK is sent by an AgentManager

that received a MIGRATE message previously. It is sent to the AgentManager at the

node where the original copy of the migrating agent still resides. The AgentManager that

receives MIGRATEACK terminates the agent.

177

ASSIGN

RESYNC

MOVE

STAY

SYNCREPLY

ASSIGN:[end of OBSERVE phase]:
 [dest address of assignment]:[dest port]

ASSIGN

verify message is current:
Assign.getEndObserve() == this.endobserve?
If so, store dest address and port in ArrayList<Integer> tracking all
recipients to whom this agent needs to send feature measurements
at the end of the observation period

RESYNC

RESYNC

send SYNC to controller and go to SYNCHRONIZING mode

SYNCREPLY:[t0]:[t1]:[t2]:[start of next observation period]:
 [CHECKINSlength]:[OBSERVElength]:
 [EXCHANGElength]:[RESULTSlength]:
 [MOVESTAYlength]

SYNCREPLY

Use NTP offset calculation: offset = ((t1-t0)+(t2-t3))/2 and add this
offset to the agent's clock. t3 is the agent's time of receipt of this
SYNCREPLY. Using the updated clock, start collecting at the start of
the next observation period and send CHECKIN at the earliest
opportunity.

MOVE:[end of MOVE/STAY phase]

MOVE

verify message is current:
Move.getEndMoveStay() == this.endmovestay?
If so, send MIGRATE to a neighboring node.
Otherwise, send SYNC to controller and go to
SYNCHRONIZING mode.

STAY:[end of MOVE/STAY phase] verify message is current:
Move.getEndMoveStay() == this.endmovestay?
If so, send MIGRATE to a neighboring node.
Otherwise, send SYNC to controller and go to
SYNCHRONIZING mode.

STAY

Figure G.1: MFIRE: Messages sent by the providers and received by agents

178

SYNC

CHECKIN

RESULTS

CHECKIN:[end of CHECKIN phase]:[agentID]

CHECKIN

verify message is current:
Checkin.getEndCheckin() == this.endcheckin?
If so, store source addr & port in ArrayList<Integer>s so that at the
end of the Checkin phase, a sharing assignment is made.
Also, add new entry to agentRatings if the agentID hasn't been seen
before. Set initial rating to a common base value.
Otherwise, send RESYNC.

SYNC:[t0]

SYNC

Reply with SYNCREPLY

RESULTS:[end of RESULTS phase]:[agentID]:
 [combined classification]:[local classification]

verify message is current.
If so, register the combined classification as one vote in the global
classification, unless the combined classification == NONE,
in which case we can use the local classification but weighted
differently than the combined classification.
If the message is not current, disregard the classifications and
send RESYNC.

RESULTS

Figure G.2: MFIRE: Messages sent by agents and received by the providers

SHARE

SHARE:[end of EXCHANGE phase]:
 [feature1 ID]:[feature1 value]:
 [feature2 ID]:[feature2 value]:[...]

verify message is current.
If so, store features to use at the end of the EXCHANGE phase
to make the combined classification.
If the message is not current, disregard.

SHARE

Figure G.3: MFIRE: Messages sent by agents to other agents

MIGRATE

MIGRATE:
 [classifier class name],[param 1],[param 2],[...]:
 [observation 1 class name]*[o1 param 1]*[o1 param 2]*[...],
 [observation 2 class name]*[o2 param 1]*[o2 param 2]*[...],
 [...]:
 [feature 1 class name]*[f1 param 1]*[f1 param 2]*[...],
 [feature 2 class name]*[f2 param 1]*[f2 param 2]*[...],
 [...]

MIGRATE

Instantiate agent at this node.

MIGRATEACK MIGRATEACK

MIGRATEACK:[original port] Invoke this.host.killProcess([original port])

Figure G.4: MFIRE: Messages involved in agent migration

179

G.2 MFIRE: Observations

Each observation in MFIRE represents a traffic statistic collected over the duration of

a single timestep. These are used to derive feature values.

The fourteen observations collected by agents in MFIRE:

1. Average number of bytes per < destaddr, destport >-tuple

2. Average number of bytes per < sourceaddr, sourceport >-tuple

3. Number of distinct destination addresses

4. Number of distinct < destaddr, destport >-tuples

5. Number of distinct destination ports

6. Ratio of destination ports to destination addresses

7. Total number of inbound bytes

8. Total number of inbound packets

9. Ratio of packets to < destaddr, destport >-tuples

10. Ratio of packets to < sourceaddr, sourceport >-tuples

11. Number of distinct source addresses

12. Number of distinct < sourceaddr, sourceport >-tuples

13. Number of distinct source ports

14. Ratio of source ports to source addresses

Clearly there are many linear dependencies in this set of observations. Care must be

exercised when performing feature selection from this set.

180

Bibliography

[1] “Snort”. URL www.snort.org.

[2] “Port Numbers”, February 2011. URL http://www.iana.org/assignments/
port-numbers.

[3] Achtert, C.; Kriegel H. P.; Kroger P.; Muller-Gorman I.; Zimek A., E.; Bohm.
Advances in databases concepts, systems and applications. Springer, Berlin New
York, 2007.

[4] Albert, R., H. Jeong, and A.L. Barabási. “Error and attack tolerance of complex
networks”. Arxiv preprint cond-mat/0008064, 2000.

[5] Amaldi, E. and V. Kann. “On the approximability of minimizing nonzero variables
or unsatisfied relations in linear systems”. Theoretical Computer Science, 209(1-
2):237–260, 1998. ISSN 0304-3975.

[6] Anderson, Richard; Bozek Thomas, Robert H.; Brackney. “Advanced Network
Defense Research”, 2000.

[7] Asa, Norman. “Cyberattacks on Iran Stuxnet and Flame”. The New York Times,
2013.

[8] Atserias, Albert, Andrei A. Bulatov, and Anuj Dawar. “Affine systems of equations
and counting infinitary logic”. Theor. Comput. Sci., 410(18):1666–1683, 2009.

[9] Axelsson, S. “Intrusion detection systems: A survey and taxonomy”. 2000.

[10] B, Neethu. “Classification of Intrusion Detection Dataset using machine learning
Approaches”. International Journal of Electronics and Computer Science Engineer-
ing, 1044–1065. Department of Computer Science, Amrita University, 2011. ISBN
2277-1956.

[11] Bäck, T. Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford University Press, USA,
1996.

[12] Bagrodia, R., R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, and H.Y. Song.
“Parsec: A parallel simulation environment for complex systems”. Computer,
31(10):77–85, 2002. ISSN 0018-9162.

[13] Banks, J., B.L. Nelson, and D.M. Nicol. Discrete-event system simulation. Prentice
Hall, 2009. ISBN 0136062121.

181

[14] Banzhaf, Peter; Keller Robert; Francone Frank, Wolfgang; Nordin. Genetic
programming : an introduction on the automatic evolution of computer programs
and its applications. Morgan Kaufmann Publishers Dpunkt-verlag, San Francisco,
Calif. Heidelburg, 1998. ISBN 9781558605107.

[15] Bar, S., M. Gonen, and A. Wool. “A geographic directed preferential Internet
topology model”. Computer Networks, 51(14):4174–4188, 2007. ISSN 1389-1286.

[16] Barabási, A.L. and R. Albert. “Emergence of scaling in random networks”. Science,
286(5439):509, 1999.

[17] Barford, P. and M. Crovella. “Generating representative web workloads for network
and server performance evaluation”. Proceedings of the 1998 ACM SIGMETRICS
joint international conference on Measurement and modeling of computer systems,
160. ACM, 1998. ISBN 0897919823.

[18] Barr, R.S., B.L. Golden, J.P. Kelly, M.G.C. Resende, and W.R. Stewart. “Designing
and reporting on computational experiments with heuristic methods”. Journal of
Heuristics, 1(1):9–32, 1995. ISSN 1381-1231.

[19] Bartos, Karel, Martin Grill, and Vojttech Krmicek. “Flow Based Network Intrusion
Detection System using Hardware-Accelerated NetFlow Probes”. CESNET
Conference 2008 Proceedings, pp. 49-56. 2008.

[20] Becchi, M. “From Poisson Processes to Self-Similarity: a Survey of Network Traffic
Models”. 2008.

[21] Bellifemine, F., A. Poggi, and G. Rimassa. “JADE–A FIPA-compliant agent
framework”. Proceedings of PAAM, volume 99, 97–108. Citeseer, 1999.

[22] Bellifemine, F., A. Poggi, and G. Rimassa. “Developing multi-agent systems with a
FIPA-compliant agent framework”. Software: Practice and Experience, 31(2):103–
128, 2001. ISSN 1097-024X.

[23] Bellman, R. “Adaptive control processes: a guided tour”. Princeton University
Press, 1:2, 1961.

[24] Berenger, Ralph D. “War in Cyberspace”. Journalism and Mass Communication,
2010.

[25] Bertsekas, Dimitri. Neuro-dynamic programming. Athena Scientific, Belmont,
Mass, 1996. ISBN 1886529108.

[26] Bhattacharyya, A. “On a measure of divergence between two statistical populations
defined by probability distributions”. Bull. Calcutta Math. Soc, 35:99–109, 1943.

[27] Bishop, C.M. Pattern recognition and machine learning, volume 4. Springer New
York, 2006.

182

[28] Bollobás, B. Random graphs. Cambridge University Press, 2001.

[29] Brauckhoff, D., B. Tellenbach, A. Wagner, M. May, and A. Lakhina. “Impact
of packet sampling on anomaly detection metrics”. Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, 159–164. ACM, 2006. ISBN
1595935614.

[30] Brazier, Dunin-Keplicz B. Jennings N.R., F.M.T. and J. Treur. “DESIRE: Modelling
Multi-Agent Systems in a Computational Formal Framework”, 1997.

[31] Breitbart, Anthony. “Threat of next world war may be in cyberspace: UN”. Frost’s
Meditations, 300(1):31–39, 2009.

[32] Bulatov, Andrei A. “H-Coloring dichotomy revisited”. Theor. Comput. Sci.,
349(1):31–39, 2005.

[33] Burgess, Mark. “CFEngine”. URL www.cfengine.com.

[34] Burnett, Chris, Timothy J. Norman, and Katia Sycara. “Sources of Sterotypical Trust
in Multi-Agent Systems”. Trust in Agent Societies, 14th Edition. 2011.

[35] Calvert, K.I., M.B. Doar, and E.W. Zegura. “Modeling Internet topology”.
Communications Magazine, IEEE, 35(6):160 –163, June 1997. ISSN 0163-6804.

[36] Chang, Chih-Chung and Chih-Jen Lin. LIBSVM: a library for support vector
machines, 2001. Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[37] Chapelle, O., P. Haffner, and V.N. Vapnik. “Support vector machines for histogram-
based image classification”. Neural Networks, IEEE Transactions on, 10(5):1055–
1064, 2002. ISSN 1045-9227.

[38] Chella, Cossentino-M. Sabatucci L. Seidita V., A. “An agile process for designing
agents”, 2006.

[39] Chen, Z., L. Gao, and K. Kwiat. “Modeling the spread of active worms”.
INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications. IEEE Societies, volume 3, 1890–1900. IEEE, 2003. ISBN
0780377524. ISSN 0743-166X.

[40] Cheng, L. Simulation and topology generation for large-scale distributed systems.
Ph.D. thesis, UNIVERSITY OF BRITISH COLUMBIA, 2009.

[41] Cheng, L., N.C. Hutchinson, and M.R. Ito. “RealNet: A topology generator based
on real internet topology”. Advanced Information Networking and Applications-
Workshops, 2008. AINAW 2008. 22nd International Conference on, 526–532. IEEE,
2008.

[42] Cid, Daniel. “OSSEC”. URL www.ossec.net.

183

[43] Coello, C.A.C., G.B. Lamont, and D.A. Van Veldhuizen. Evolutionary algorithms
for solving multi-objective problems. Springer-Verlag New York Inc, 2nd edition,
2007.

[44] Cossentino, Fortino-G. Garro A. Mascillaro S. Russo W., M. “PASSIM: A
Simulation-based Process for the Development of Multi-Agent Systems”, 2008.

[45] Crucitti, Paolo, Vito Latora, Massimo Marchiori, and Andrea Rapisarda. “Error and
attack tolerance of complex networks”. Physica A: Statistical Mechanics and its
Applications, 340(1-3):388 – 394, 2004. ISSN 0378-4371.

[46] Dawkins, Richard. The Selfish Gene. Oxford University Press, Oxford New York,
1989. ISBN 0192860925.

[47] De Wolf, T. “Analysing and Engineering Emergent Applications”, 2007.

[48] Devroye, Luc. “Random variate generation in one line of code”. Proceedings of the
28th conference on Winter simulation, WSC ’96, 265–272. IEEE Computer Society,
Washington, DC, USA, 1996. ISBN 0-7803-3383-7. URL http://dx.doi.org/10.1145/

256562.256623.

[49] Doar, M.B. “A Better Model for Generating Test Networks”. Conference record,
86. Institute of Electrical and Electronics Engineers, 1996.

[50] Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern Classification (2nd
Edition). Wiley-Interscience, 2 edition, November 2000. ISBN 0471056693.

[51] Durillo, Juan J., Antonio J. Nebro, Francisco Luna, Bernabé Dorronsoro, and En-
rique Alba. jMetal: A Java Framework for Developing Multi-Objective Optimiza-
tion Metaheuristics. Technical Report ITI-2006-10, Departamento de Lenguajes y
Ciencias de la Computación, University of Málaga, E.T.S.I. Informática, Campus de
Teatinos, December 2006.

[52] Erdos, P. and A. Rényi. “On the evolution ofrandom graphs”. Publications of the
Mathematical Institute of the Hungarian Academy of Science, 5:17–61, 1960.

[53] Erriquez, Elisabetta. “An abstract framework for reasoning about trust”. Trust in
Agent Societies, 14th Edition. 2011.

[54] Fabrikant, A., E. Koutsoupias, and C. Papadimitriou. “Heuristically optimized trade-
offs: A new paradigm for power laws in the Internet”. Automata, Languages and
Programming, 781–781, 2002.

[55] Faloutsos, M., P. Faloutsos, and C. Faloutsos. “On power-law relationships of the
internet topology”. Proceedings of the conference on Applications, technologies,
architectures, and protocols for computer communication, 251–262. ACM, 1999.
ISBN 1581131356.

184

[56] Feferman, Solomon. “The nature and significance of Godels incompleteness
theorems”, 2006.

[57] Ferber, J. Multi-agent systems: an introduction to distributed artificial intelligence.
Addison-Wesley, 1999. ISBN 9780201360486. URL http://books.google.com/

books?id=zt1SAAAAMAAJ.

[58] Ferreira, Candida. Gene expression programming : mathematical modeling by an
artificial intelligence. Angra do Heroismo, Portugal, 2002. ISBN 9729589054.

[59] Fienberg, S. E. “Conflicts Between the Needs for Access to Statistical Information
and Demands for Confidentiality”. Journal of Official Statistics, 115–132. IEEE,
1994.

[60] Fisher, Danyel. “Animation for Visualization: Opportunities and Drawbacks”, 2012.

[61] Floyd, R.W. “Algorithm 97: shortest path”. Communications of the ACM, 5(6):345,
1962. ISSN 0001-0782.

[62] Franklin, S. and A. Graesser. “Is it an Agent, or just a Program?: A Taxonomy
for Autonomous Agents”. Intelligent Agents III Agent Theories, Architectures, and
Languages, 21–35, 1997.

[63] Fudenberg, Drew. Game theory. MIT Press, Cambridge, Mass, 1991. ISBN
0262061414.

[64] Fujimoto, Richard M. “Parallel discrete event simulation”. Commun. ACM, 33:30–
53, October 1990. ISSN 0001-0782. URL http://doi.acm.org/10.1145/84537.84545.

[65] Gardelli, Viroli-M. Omicini A., L. “On the Roll of Simultions in the Engineering of
Self-Organising MAS”, July 2005.

[66] Garey, Michael. Computers and intractability : a guide to the theory of NP-
completeness. W.H. Freeman, San Francisco, 1979. ISBN 0716710455.

[67] Gijsberts, Arjan. Evolutionary Optimiztation of Kernel Machines. Master’s thesis,
Delft University of Technology, August 2007.

[68] Gomez-Sanz, Botia J. Serrano E. Pavon J., J.J. “Testing and Debugging of MAS
Interactions with INGENIAS”, 2009.

[69] Gordon, J. “Pareto process as a model of self-similar packet traffic”. Global
Telecommunications Conference, 1995. GLOBECOM’95., IEEE, volume 3, 2232–
2236. IEEE, 2002. ISBN 0780325095.

[70] Greene, William H. “Econometric Analysis”, 1993.

185

[71] Grefenstette, John J. “Lamarckian Learning in Multi-agent Environments”.
Proceedings of the Fourth International Conference on Genetic Algorithms, 303–
310. Morgan Kaufmann, 1991.

[72] Guyon, I. and A. Elisseeff. “An introduction to variable and feature selection”. The
Journal of Machine Learning Research, 3:1157–1182, 2003. ISSN 1532-4435.

[73] Haines, Joshua. “Extending the DARPA Off-Line Intrusion Detection Evaluations”.
DISCEX-II. Lincoln Laboratory, Massachusetts Institute of Techonology, 2011.

[74] Halbwachs, N. and L. Mandel. “Simulation and verification of asynchronous
systems by means of a synchronous model”. 2006. ISSN 1550-4808.

[75] Hancock, D. and G. Lamont. “Multi Agent Systems on Military Networks”. IEEE
Symposium on Computational Intelligence in Cyber Security. 2011.

[76] Hancock, D. and G. Lamont. “Reputation in a multi agent system for flow-based
network attack classification”. IEEE Symposium on Intelligent Agents. 2011.

[77] Hancock, David. A Multi-Agent System for Flow-Based Intrusion Detection Using
Reputation and Evolutionary Computation. Master’s thesis, Air Force Institute of
Technology, March 2011.

[78] Hansman, Ray, Simon; Hunt. “A taxonomy of network and computer attacks”.
Computer and Security, 2004.

[79] Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series
in Statistics). Springer, 2nd ed. 2009. corr. 3rd printing edition, February 2009.
ISBN 0387848576. URL http://www-stat.stanford.edu/∼tibs/ElemStatLearn/.

[80] Hernandez-Pereira, E., J.A. Suarez-Romero, O. Fontenla-Romero, and A. Alonso-
Betanzos. “Conversion methods for symbolic features: A comparison applied to
an intrusion detection problem”. Expert Systems with Applications, 36(7):612–617,
2009.

[81] Herrero, Alvaro and Emilio Corchado. “Multiagent Systems for Network Intrusion
Detection: A Review”. Computational Intelligence in Security for Information
Systems, 63:143–154, 2009.

[82] Hildebrandt, D., L. Bischofs, and W. Hasselbring. “RealPeer–A Framework for
Simulation-Based Development of Peer-to-Peer Systems”. Parallel, Distributed
and Network-Based Processing, 2007. PDP’07. 15th EUROMICRO International
Conference on, 490–497. IEEE, 2007. ISBN 0769527841. ISSN 1066-6192.

[83] Holdaway, Eric J. “ACTIVE COMPUTER NETWORK DEFENSE: AN ASSESS-
MENT”, 2001.

186

[84] Holloway, Eric. Self Organized Multi Agent Swarms for Network Security Control.
Master’s thesis, Air Force Institute of Technology, March 2009.

[85] Horng, Shi-Jinn, M. Su, and Y. Chen. “A novel intrusion detection system based
on hierarchical clustering and support vector machines”. Expert Systems with
Applications, 1:306–313, 2011.

[86] Howden, N., R. R
”onnquist, A. Hodgson, and A. Lucas. “JACK intelligent agents-summary of an
agent infrastructure”. 5th International Conference on Autonomous Agents. Citeseer,
2001.

[87] Howell, Donna. “Tech Security 2013 Forecast: Clouds, Rain Of Threats”. Investor’s
Business Daily, 2012.

[88] Huynh, T.D., N.R. Jennings, and N.R. Shadbolt. “An integrated trust and reputation
model for open multi-agent systems”. Autonomous Agents and Multi-Agent Systems,
13(2):119–154, 2006. ISSN 1387-2532.

[89] Ivanciuc, Ovidiu. “Applications of Support Vector Machines in Chemistry”, 2007.
URL http://www.support-vector-machines.org/SVM soft.html.

[90] Jansen, W.A. “Intrusion detection with mobile agents”. Computer Communications,
25(15):1392–1401, 2002. ISSN 0140-3664.

[91] Joachims, Thorsten. “SVM-light”, August 2008. URL http://svmlight.joachims.
org/.

[92] Josang, Audun, Roslan Ismail, and Colin Boyd. “A Survey of Trust and Reputation
Systems for Online Service Provision”. Decision Support Systems, 43:618–644,
2007.

[93] Karthick, R., Hattiwale V., and B. Ravindran. “Adaptive network intrusion
detection system using a hybrid approach”. Fourth International Conference on
Communication Systems and Networks (COMSNETS), 1:1–7, 2012.

[94] Kidney, Denzinger J., J. “Testing the Limits of Emergent Behavior in MAS using
Learning of Cooperative Behavior”.

[95] Kim, J., S. Radhakrishnan, and S.K. Dhall. “Measurement and analysis of
worm propagation on Internet network topology”. Computer Communications and
Networks, 2004. ICCCN 2004. Proceedings. 13th International Conference on, 495–
500. IEEE, 2005. ISBN 0780388143. ISSN 1095-2055.

[96] Kimeldorf, G., G.; Wahba. “Some Results on Tchebycheffian Spline Functions”,
1971.

187

[97] Knuth, D.E. The Stanford GraphBase: a platform for combinatorial computing.
AcM Press, 1993. ISBN 0201542757.

[98] Kohavi, R. and G.H. John. “Wrappers for feature subset selection”. Artificial
intelligence, 97(1-2):273–324, 1997. ISSN 0004-3702.

[99] Kong, J., M. Mirza, J. Shu, C. Yoedhana, M. Gerla, and S. Lu. “Random flow
network modeling and simulations for DDoS attack mitigation”. Communications,
2003. ICC’03. IEEE International Conference on, volume 1, 487–491. IEEE, 2003.
ISBN 0780378024.

[100] Kotsiantis, S. B. “Supervised Machine Learning: A Review of Classification
Techniques”. Informatica, 31:249–268, 2007.

[101] Krishnamurthy, B. and W. Willinger. “What are our standards for validation
of measurement-based networking research?” ACM SIGMETRICS Performance
Evaluation Review, 36(2):64–69, 2008. ISSN 0163-5999.

[102] Kuipers, B.J. “Qualitative simulation: then and now”. Artificial intelligence in
perspective, MIT Press, Cambridge, MA, 1994.

[103] Kung, H. T., F. Luccio, and F. P. Preparata. “On Finding the Maxima of a Set
of Vectors”. J. ACM, 22(4):469–476, October 1975. ISSN 0004-5411. URL
http://doi.acm.org/10.1145/321906.321910.

[104] Kurose, J. and K. Ross. Computer Networking: A top-down approach. Pearson
Addison-Wesley, fifth edition, 2009.

[105] Lal, T., O. Chapelle, J. Weston, and A. Elisseeff. “Embedded methods”. Feature
Extraction, 137–165, 2006.

[106] Larman, C. Applying UML and patterns: an introduction to object-oriented analysis
and design and the unified process. Prentice Hall PTR Upper Saddle River, NJ, USA,
2001. ISBN 0130925691.

[107] Lavelle, Stephen. “Fabricating Synthetic Data in Support of Training for Domestic
Terrorist Activity Data Mining Research”, 2010.

[108] Lawrence, Jeannette. Introduction to neural networks : design, theory and
applications. California Scientific Software, Nevada City, Calif, 1994. ISBN
1883157005.

[109] Lee, Yi;, Yoonkyung; Lin and Grace Wahba. “Multicategory Support Vector
Machines: Theory and Application to the Classi cation of Microarray Data and
Satellite Radiance Data”, 2004.

[110] Li, M. “An approach to reliably identifying signs of DDOS flood attacks based on
LRD traffic pattern recognition”. Computers & Security, 23(7):549–558, 2004.

188

[111] Liljenstam, M., Y. Yuan, BJ Premore, and D. Nicol. “A mixed abstraction level
simulation model of large-scale Internet worm infestations”. Modeling, Analysis and
Simulation of Computer and Telecommunications Systems, 2002. MASCOTS 2002.
Proceedings. 10th IEEE International Symposium on, 109–116. IEEE, 2003. ISBN
0769518400. ISSN 1526-7539.

[112] Lomuscio, A. and F. Raimondi. “MCMAS: A Model Checker for Multi-agent
Systems”, 2006.

[113] López, S., A. Brintrup, D. McFarlane, and D. Dwyer. “Selecting a multi-agent
system development tool for industrial applications: a case study of self-serving
aircraft assets”. Digital Ecosystems and Technologies (DEST), 2010 4th IEEE
International Conference on, 400–405. IEEE. ISSN 2150-4938.

[114] Lough, Daniel. “A Taxonomy of Computer Attacks with Applications to Wireless
Networks”, 2001.

[115] Luke, Sean. “Multiagent Simulation and the MASON Library”, August 2011. URL
http://cs.gmu.edu/eclab/projects/mason/.

[116] Luke, Sean, Claudio Cioffi-Revilla, Liviu Panait, and Keith Sullivan. “MASON:
A New Multi-Agent Simulation Toolkit”. Proceedings of the 2004 Swarmfest
Workshop. 2004.

[117] Lynch, Rajendran K., S. “Design Diagrams for Multi-Agent Systems”, 2004.

[118] Lynn III, W.F. “Defending a New Domain: The Pentagon’s Cyberstrategy”. 2010.

[119] Magoni, D. “nem: A software for network topology analysis and modeling”. 10th
IEEE International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems (MASCOTS), 364. 2002.

[120] Manning, ; Raghavan P.;, C and H. Schutze. Introduction to Information
Retrieval. Cambridge University Press, 2008. ISBN http://nlp.stanford.edu/IR-
book/html/htmledition/irbook.html.

[121] McCanne, S., S. Floyd, and K. Fall. “ns2 (network simulator 2)”. last accessed:
February, 23, 2010.

[122] McDonald, C. “The cnet network simulator”. University of Western Australia, 2003.

[123] McDonald, Chris. “The cnet network simulator”. URL http://www.csse.uwa.edu.
au/cnet/index.html.

[124] Meadows, Donella H. “Places to Intervene In a System”, July 2005.

189

[125] Medina, A., A. Lakhina, I. Matta, and J. Byers. “BRITE: An approach to
universal topology generation”. Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 2001. Proceedings. Ninth International Symposium on,
346–353. IEEE, 2002. ISBN 0769513158.

[126] Meier, J.D. “Improving Web Application Security: Threats and Countermeasures”,
June 2003. URL http://msdn.microsoft.com/en-us/library/ff649874.aspx.

[127] Miller, D. “DoD works with industry on automated network intrusion defense
system”, 2011.

[128] Milner, R. and University of Edinburgh. Department of Computer Science. On
relating synchrony and asynchrony. Department of Computer Science, University
of Edinburgh, 1980.

[129] Ming-Yang and Su. “Real-time anomaly detection systems for Denial-of-
Service attacks by weighted k-nearest-neighbor classifiers”. Expert Systems with
Applications, 38(4):3492 – 3498, 2011. ISSN 0957-4174. URL http://www.
sciencedirect.com/science/article/pii/S0957417410009450.

[130] Mirkovic, J. and P. Reiher. “A taxonomy of DDoS attack and DDoS defense
mechanisms”. ACM SIGCOMM Computer Communication Review, 34(2):39–53,
2004. ISSN 0146-4833.

[131] Mofe, Winnie; Kaeli David; Zhao Qin, Micha; Cheng. “Hunting Trojan Horses”,
2006.

[132] Molsa, J. “Mitigating Denial of Service Attacks”. Journal of Computer Security,
volume 13, 807–837. 2005.

[133] Moore, Andrew W., Denis Zuev, and Michael L. Crogan. Discriminators for use
in flow-based classification. Technical report, Queen Mary University of London,
2005.

[134] Nguyen, Perini A. Bernon C. Pavon J., C. and J. Thangarajah. “Testing in Multi-
Agent Systems”, July 2009.

[135] Nguyen, Perini A. Tonella P., C.D. “Goal Oriented Testing for MASs”, 2008.

[136] Obama, Barack. “The Comprehensive National Cybersecurity Initiative”. White-
house Journal, 2013.

[137] Oetiker, Tobi. “RRDTool”. URL oss.oetiker.ch/rrdtool.

[138] Oltean, C., M.; Grosan. “A comparison of several linear genetic programming
techniques”, 2003.

190

[139] Park, Hyungwook and Paul A. Fishwick. “A GPU-Based Application Framework
Supporting Fast Discrete-Event Simulation”. Simulation, 86:613–628, October
2010. ISSN 0037-5497. URL http://dx.doi.org/10.1177/0037549709340781.

[140] Parker, S.P. McGraw-Hill dictionary of scientific and technical terms. MCGRAW
HILL DICTIONARY OF SCIENTIFIC AND TECHNICAL TERMS. McGraw-
Hill, 2003. ISBN 9780070423138. URL http://books.google.com/books?id=

xOPzO5HVFfEC.

[141] Peng, Tao. Defending Against Distributed Denial of Service Attacks. Ph.D. thesis,
The University of Melbourne, April 2004.

[142] Perdisci, Roberto, Davide Ariu, Prahlad Fogla, Giorgio Giacinto, and Wenke Lee.
“McPAD : A Multiple Classifier System for Accurate Payload-based Anomaly
Detection”. Computer Networks, Special Issue on Traffic Classification and Its
Applications to Modern Networks, 5:864–881, 2009.

[143] Postel, J. “RFC 793: Transmission control protocol”, 1981.

[144] Postel, J.B. “User Datagram Protocol. RFC 768”, 1980.

[145] Poutakidis, Winikoff M. Padgham L. Zhang Z., D. “Debigging and Testing of Multi-
Agent Systems using Design Artefacts”, 2009.

[146] Quittek, J., T. Zseby, and B. Claise. S. Zander,” Requirements for IP Flow
Information Export (IPFIX). Technical report, RFC 3917, October 2004.

[147] Resnick, P. and R. Zeckhauser. “Trust among strangers in Internet transactions: Em-
pirical analysis of eBay’s reputation system”. Advances in Applied Microeconomics:
A Research Annual, 11:127–157, 2002. ISSN 0278-0984.

[148] Rish, Irina. “An empirical study of the naive Bayes classifier”, 2001.

[149] Russell, Stuart and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2nd edition, December 2002. ISBN 0137903952.

[150] Scepanovic, Sanja. Mitigating DDoS attacks with cluster-based filtering. Master’s
thesis, Aalto University, June 2011.

[151] Sellke, S.H., N.B. Shroff, and S. Bagchi. “Modeling and automated containment of
worms”. IEEE Transactions on Dependable and Secure Computing, 71–86, 2007.
ISSN 1545-5971.

[152] Serrano, Gomez-Sanz J.J. Botia J.A. Pavon J., E. “Intelligent Data Analysis, Applied
to Debug Complex Software Systems”, 2009.

[153] Shawe-Taylor, John and Nello Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

191

[154] Shirey, R. “Internet Security Glossary, Version 2”, August 2007. URL http:
//tools.ietf.org/html/rfc4949.

[155] Shoham, Y. and K. Leyton-Brown. Multiagent systems: algorithmic, game-
theoretic, and logical foundations. Cambridge Univ Pr, 2008. ISBN 0521899435.

[156] Sierra, Aguilar-J.A.R. Norieaga P. Esteva M. Arcos J.L., C. “Engineering Multi-
Agent Systems as Electronic Institutions”, 2004.

[157] Singh, Ram Kumar. “Intrusion Detection System Using Advanced Honeypots”,
2009.

[158] Skormin, O.; Tokhtabayev A.;, V.; Shiryayeva and J. Moronski. “Towards Fully
Automatic Defense Mechanism for a Computer Network Emulating Active Immune
Response”, 2006.

[159] Skoudis, Ed and Tom Liston. Counter Hack Reloaded. Prentice Hall, 2nd edition,
January 2006.

[160] Soergel, D. “jlibsvm”, 2009. URL http://dev.davidsoergel.com/trac/jlibsvm.

[161] Spatharis, A., I. Foudalis, M. Gjoka, P. Krouska, C. Amanatidis, C. Papadimitriou,
and M. Sideri. “Improved tradeoff-based models of the Internet”. Proc.
of SIWN/IEEE International Conference on Complex Open Distributed Systems,
volume 7. 2008.

[162] Specht, Ruby B., Stephen M.and Lee. “Distributed Denial of Service: Taxonomies
of Attacks, Tools and Countermeasures”. Proceedings of the 17th International
Conference on Parallel and Distributed Computing Systems, 2004 International
Workshop on Security in Parallel and Distributed Systems, 543–550. September
2004.

[163] Sperotto, A., G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller. “An
Overview of IP Flow-Based Intrusion Detection”. IEEE Communications Surveys &

Tutorials, 12(3):343–356, 2010. ISSN 1553-877X.

[164] Stanley, Kenneth O. “Real-Time Neuroevolution in the NERO Video Game”, 2005.

[165] Storn, Rainer and Kenneth Price. “Differential Evolution A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces”. Journal of Global
Optimization, 11:341–359, 1997. ISSN 0925-5001. URL http://dx.doi.org/10.1023/

A%3A1008202821328.

[166] von Stosch, Moritz. “Novel Strategies for Process Control Based on Hybrid Semi-
parametric Mathematical Systems”, 2011.

[167] Subrahmanian, V.S. Heterogeneous Agent Systems. Mit Press, 2000. ISBN
9780262194365. URL http://books.google.com/books?id=2YMUNKuq8mYC.

192

[168] Talbi, E.G. Metaheuristics: from design to implementation. Wiley, 2009. ISBN
0470278587.

[169] Tartakovsky, B. L.; Blazek R.B., A. G.; Rozovskii. “A Novel Approach to Detection
of Intrusions in Computer Networks via Adaptive Sequential and Batch-Sequential
Change-Point Detection Methods”, 2006.

[170] Thomas, Ciza. “Usefulness of DARPA Dataset for Intrusion Detection System
Evaluation”. IEEE. Indian Institute of Science, Bangalore, India, 2011.

[171] Urbanowicz, Ryan J. and Jason H. Moore. “Learning Classifier Systems: A
Complete Introduction, Review, and Roadmap”, 2009.

[172] Vapnik, V.N. The nature of statistical learning theory. Springer Verlag, 2000. ISBN
0387987800.

[173] Vapnik, V.N. “An overview of statistical learning theory”. Neural Networks, IEEE
Transactions on, 10(5):988–999, 2002. ISSN 1045-9227.

[174] Varga, A. et al. “The OMNeT++ discrete event simulation system”. Proceedings of
the European Simulation Multiconference (ESM2001), 319–324. 2001.

[175] Viola, Ivan, Armin Kanitsar, and Meister Eduard Gröller. “Importance-Driven
Feature Enhancement in Volume Visualization”. IEEE Transactions on Visualization
and Computer Graphics, 11(4):408–418, 2005. URL http://www.cg.tuwien.ac.at/
research/publications/2005/viola-2005-imp/.

[176] Wagner, A., T. D
”ubendorfer, B. Plattner, and R. Hiestand. “Experiences with worm propagation
simulations”. Proceedings of the 2003 ACM workshop on Rapid Malcode, 34–41.
ACM, 2003. ISBN 1581137850.

[177] Wang, D., G. Chang, X. Feng, and Guo R. “Research on the Detection of
Distributed Denial of Service Attacks Based on the Characteristics of IP Flow”.
NPC Proceedings of the IFIP International Conference on Network and Parallel
Computing, 1:86–93, 2008.

[178] Wang, Ke, Gabriela Cretu, and Salvatore Stolfo. Anomalous Payload-based Worm
Detection and Signature Generation. Technical report, Columbia University, 2004.

[179] Wang, Shen Y. Huang T. Zeng Z., H. The sixth International Symposium on Neural
Networks (ISNN 2009. Springer, Berlin Heidelberg, 2009. ISBN 9783642012150.

[180] Waxman, BM. “Routing of Multipoint Connections”. Selected Areas in Comm,
6(9):1617–1622, 1988.

[181] Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence.

193

[182] Whitman, Michael E. and Herbert J. Mattord. Principles of Information Security.
Course Technology, 2011.

[183] Willinger, W., D. Alderson, and J. Doyle. “Mathematics and the Internet: a source
of enormous confusion and great potential”. Notices of the American Mathematical
Society, 56(5):586–599, May 2009.

[184] Willinger, W. and V. Paxson. “Where mathematics meets the Internet”. Notices of
the American Mathematical Society, 45(8):961–971, 1998. ISSN 0002-9920.

[185] Wilson, Timothy. MFIRE-2: A Multi-Agent System for Flow-Based Intrusion
Detection Using Stochastic Search. Master’s thesis, Air Force Institute of
Technology, March 2012.

[186] Winick, J. and S. Jamin. Inet-3.0: Internet Topology Generator. Technical Report
UM-CSE-TR-456-02, Department of EECS, University of Michigan, 2002.

[187] Winter, P., E. Hermann, and M. Zeilinger. “Inductive Intrusion Detection in Flow-
Based Network Data Using One-Class Support Vector Machines”. Proc. 4th IFIP
Int New Technologies, Mobility and Security (NTMS) Conf, 1–5. 2011.

[188] Yook, S.H., H. Jeong, and A.L. Barabási. “Modeling the Internet’s large-scale
topology”. Proceedings of the National Academy of Sciences of the United States of
America, 99(21):13382, 2002.

[189] Zacharia, G. and P. Maes. “Trust management through reputation mechanisms”.
Applied Artificial Intelligence, 14(9):881–907, 2000. ISSN 0883-9514.

[190] Zegura, E.W., K.L. Calvert, and M.J. Donahoo. “A quantitative comparison of
graph-based models for Internet topology”. IEEE/ACM Transactions on Networking
(TON), 5(6):770–783, 1997. ISSN 1063-6692.

[191] Zeng, X., R. Bagrodia, and M. Gerla. “GloMoSim: a library for parallel simulation
of large-scale wireless networks”. ACM SIGSIM Simulation Digest, 28(1):154–161,
1998. ISSN 0163-6103.

[192] Zhang, Ruishan, Xinyuan Wang, Ryan Farley, Xiaohui Yang, and Xuxian Jiang.
“On the feasibility of launching the man-in-the-middle attacks on VoIP from
remote attackers”. Proceedings of the 4th International Symposium on Information,
Computer, and Communications Security, ASIACCS ’09, 61–69. ACM, New York,
NY, USA, 2009. ISBN 978-1-60558-394-5. URL http://doi.acm.org/10.1145/

1533057.1533069.

[193] Zou, C.C., W. Gong, and D. Towsley. “Code red worm propagation modeling
and analysis”. Proceedings of the 9th ACM conference on Computer and
communications security, 138–147. ACM, 2002. ISBN 1581136129.

194

[194] Zou, C.C., W. Gong, and D. Towsley. “Worm propagation modeling and analysis
under dynamic quarantine defense”. Proceedings of the 2003 ACM workshop on
Rapid Malcode, 60. ACM, 2003. ISBN 1581137850.

195

Vita

David Ryan was born February 22, 1989 in Cincinnati, Ohio. When David was 18 he

attended the United States Air Force Academy and Graduated in 2011 with a Bachelor of

Science in Computer Engineering. After graduation from the Academy, David attended the

Air Force Institute of Technology at Wright-Patterson Air Force Base, earning a Master of

Science in Computer Engineering with an emphasis in Artificial Intelligence. David begins

his first operational assignment with the 463rd Network Warfare Squadron at Lackland Air

Force Base as an Electronic Warfare Officer following Graduation.

196

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

21–03–2013 Master’s Thesis Oct 2011–Mar 2013

A Multi Agent System for Flow-Based Intrusion Detection

Ryan, David A., Second Lieutenant, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-13-M-43

12. DISTRIBUTION / AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES
This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT
The detection and elimination of threats to cyber security is essential for system functionality, protection of valuable
information, and preventing costly destruction of assets. This thesis presents a Mobile Multi-Agent Flow-Based IDS
called MFIREv3 that provides network anomaly detection of intrusions and automated defense.
This version of the MFIRE system includes the development and testing of a Multi-Objective Evolutionary Algorithm
(MOEA) for feature selection that provides agents with the “optimal” set of features for classifying the state of the
network. Feature selection provides separable data points for the selected attacks: Worm, Distributed Denial of Service,
Man-in-the-Middle, Scan, and Trojan.
This investigation develops three techniques of self-organization for multiple distributed agents in an intrusion detection
system: Reputation, Stochastic, and Maximum Cover. These three movement models are tested for effectiveness in
locating good agent vantage points within the network to classify the state of the network.
MFIREv3 also introduces the design of defensive measures to limit the effects of network attacks. Defensive measures
included in this research are rate-limiting and elimination of infected nodes.
The results of this research provide an optimistic outlook for flow-based multi-agent systems for cyber security. The
impact of this research illustrates how feature selection in cooperation with movement models for multi agent systems
provides excellent attack detection and classification.

15. SUBJECT TERMS
Autonomous Multi-Agent Network Intrusion Detection

U U U UU 213

(ENG)

(937) 255-3636 ext. 9363

Intentionally Left Blank

Dr. Gary B. Lamont, AFIT/ENG

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Protecting the Network
	Goal and Objectives
	Approach
	Thesis Overview

	Background for Flow-Based Intrusion Detection
	Network Modeling
	Pattern Recognition
	Intrusion Detection
	Flow-based Intrusion Detection
	Network Attacks of Interest
	Multi-Objective Optimization
	Multiagent Systems
	Reputation and Trust
	Defensive Measures of Network Agents
	Summary

	MFIREv3 Design Methodology and Implementation
	Intrusion Detection System Formalization
	Simulation Environment
	Training the Agents
	Movement models
	Defensive Measures Methodology
	Visualization
	Summary

	MFIREv3 Experimentation and Analysis of Results
	Software Testing
	K-Fold Cross-validation
	Feature Selection
	Kernel Functions
	Movement Models Experimental Design
	Movement Model Analysis
	Defense Analysis
	Summary

	MFIREv3 Conclusions and Future Research
	Conclusions
	Future Research Activity
	Applications in Real-Word Settings
	Overall Summary

	Appendix A: History
	SOMAS
	MFIRE v1.0
	MFIRE v2.0

	Appendix B: Network Threats
	Appendix C: Popular DES Engines
	Appendix D: Popular SVM Packages
	Appendix E: Intrusion Detection System Details
	Appendix F: Kernel Tests
	Appendix G: MFIRE System Details
	MFIRE: Messages
	MFIRE: Observations

	Bibliography
	Vita

